summaryrefslogtreecommitdiffstats
path: root/base/process_util_linux.cc
blob: 455af3ee1337c9d76dee3fedd1a68ed24b59f567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/process_util.h"

#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>

#include "base/file_util.h"
#include "base/logging.h"
#include "base/string_tokenizer.h"
#include "base/string_util.h"

namespace {

enum ParsingState {
  KEY_NAME,
  KEY_VALUE
};

// Reads /proc/<pid>/stat and populates |proc_stats| with the values split by
// spaces.
void GetProcStats(pid_t pid, std::vector<std::string>* proc_stats) {
  FilePath stat_file("/proc");
  stat_file = stat_file.Append(IntToString(pid));
  stat_file = stat_file.Append("stat");
  std::string mem_stats;
  if (!file_util::ReadFileToString(stat_file, &mem_stats))
    return;
  SplitString(mem_stats, ' ', proc_stats);
}

}  // namespace

namespace base {

ProcessId GetParentProcessId(ProcessHandle process) {
  FilePath stat_file("/proc");
  stat_file = stat_file.Append(IntToString(process));
  stat_file = stat_file.Append("status");
  std::string status;
  if (!file_util::ReadFileToString(stat_file, &status))
    return -1;

  StringTokenizer tokenizer(status, ":\n");
  ParsingState state = KEY_NAME;
  std::string last_key_name;
  while (tokenizer.GetNext()) {
    switch (state) {
      case KEY_NAME:
        last_key_name = tokenizer.token();
        state = KEY_VALUE;
        break;
      case KEY_VALUE:
        DCHECK(!last_key_name.empty());
        if (last_key_name == "PPid") {
          pid_t ppid = StringToInt(tokenizer.token());
          return ppid;
        }
        state = KEY_NAME;
        break;
    }
  }
  NOTREACHED();
  return -1;
}

FilePath GetProcessExecutablePath(ProcessHandle process) {
  FilePath stat_file("/proc");
  stat_file = stat_file.Append(IntToString(process));
  stat_file = stat_file.Append("exe");
  char exename[2048];
  ssize_t len = readlink(stat_file.value().c_str(), exename, sizeof(exename));
  if (len < 1) {
    // No such process.  Happens frequently in e.g. TerminateAllChromeProcesses
    return FilePath();
  }
  return FilePath(std::string(exename, len));
}

NamedProcessIterator::NamedProcessIterator(const std::wstring& executable_name,
                                           const ProcessFilter* filter)
    : executable_name_(executable_name), filter_(filter) {
  procfs_dir_ = opendir("/proc");
}

NamedProcessIterator::~NamedProcessIterator() {
  if (procfs_dir_) {
    closedir(procfs_dir_);
    procfs_dir_ = NULL;
  }
}

const ProcessEntry* NamedProcessIterator::NextProcessEntry() {
  bool result = false;
  do {
    result = CheckForNextProcess();
  } while (result && !IncludeEntry());

  if (result)
    return &entry_;

  return NULL;
}

bool NamedProcessIterator::CheckForNextProcess() {
  // TODO(port): skip processes owned by different UID

  dirent* slot = 0;
  const char* openparen;
  const char* closeparen;

  // Arbitrarily guess that there will never be more than 200 non-process
  // files in /proc.  Hardy has 53.
  int skipped = 0;
  const int kSkipLimit = 200;
  while (skipped < kSkipLimit) {
    slot = readdir(procfs_dir_);
    // all done looking through /proc?
    if (!slot)
      return false;

    // If not a process, keep looking for one.
    bool notprocess = false;
    int i;
    for (i = 0; i < NAME_MAX && slot->d_name[i]; ++i) {
       if (!isdigit(slot->d_name[i])) {
         notprocess = true;
         break;
       }
    }
    if (i == NAME_MAX || notprocess) {
      skipped++;
      continue;
    }

    // Read the process's status.
    char buf[NAME_MAX + 12];
    sprintf(buf, "/proc/%s/stat", slot->d_name);
    FILE *fp = fopen(buf, "r");
    if (!fp)
      return false;
    const char* result = fgets(buf, sizeof(buf), fp);
    fclose(fp);
    if (!result)
      return false;

    // Parse the status.  It is formatted like this:
    // %d (%s) %c %d ...
    // pid (name) runstate ppid
    // To avoid being fooled by names containing a closing paren, scan
    // backwards.
    openparen = strchr(buf, '(');
    closeparen = strrchr(buf, ')');
    if (!openparen || !closeparen)
      return false;
    char runstate = closeparen[2];

    // Is the process in 'Zombie' state, i.e. dead but waiting to be reaped?
    // Allowed values: D R S T Z
    if (runstate != 'Z')
      break;

    // Nope, it's a zombie; somebody isn't cleaning up after their children.
    // (e.g. WaitForProcessesToExit doesn't clean up after dead children yet.)
    // There could be a lot of zombies, can't really decrement i here.
  }
  if (skipped >= kSkipLimit) {
    NOTREACHED();
    return false;
  }

  entry_.pid = atoi(slot->d_name);
  entry_.ppid = atoi(closeparen + 3);

  // TODO(port): read pid's commandline's $0, like killall does.  Using the
  // short name between openparen and closeparen won't work for long names!
  int len = closeparen - openparen - 1;
  if (len > NAME_MAX)
    len = NAME_MAX;
  memcpy(entry_.szExeFile, openparen + 1, len);
  entry_.szExeFile[len] = 0;

  return true;
}

bool NamedProcessIterator::IncludeEntry() {
  // TODO(port): make this also work for non-ASCII filenames
  if (WideToASCII(executable_name_) != entry_.szExeFile)
    return false;
  if (!filter_)
    return true;
  return filter_->Includes(entry_.pid, entry_.ppid);
}

// On linux, we return vsize.
size_t ProcessMetrics::GetPagefileUsage() const {
  std::vector<std::string> proc_stats;
  GetProcStats(process_, &proc_stats);
  const size_t kVmSize = 22;
  if (proc_stats.size() > kVmSize)
    return static_cast<size_t>(StringToInt(proc_stats[kVmSize]));
  return 0;
}

// On linux, we return the high water mark of vsize.
size_t ProcessMetrics::GetPeakPagefileUsage() const {
  std::vector<std::string> proc_stats;
  GetProcStats(process_, &proc_stats);
  const size_t kVmPeak = 21;
  if (proc_stats.size() > kVmPeak)
    return static_cast<size_t>(StringToInt(proc_stats[kVmPeak]));
  return 0;
}

// On linux, we return RSS.
size_t ProcessMetrics::GetWorkingSetSize() const {
  std::vector<std::string> proc_stats;
  GetProcStats(process_, &proc_stats);
  const size_t kVmRss = 23;
  if (proc_stats.size() > kVmRss) {
    size_t num_pages = static_cast<size_t>(StringToInt(proc_stats[kVmRss]));
    return num_pages * getpagesize();
  }
  return 0;
}

// On linux, we return the high water mark of RSS.
size_t ProcessMetrics::GetPeakWorkingSetSize() const {
  std::vector<std::string> proc_stats;
  GetProcStats(process_, &proc_stats);
  const size_t kVmHwm = 23;
  if (proc_stats.size() > kVmHwm) {
    size_t num_pages = static_cast<size_t>(StringToInt(proc_stats[kVmHwm]));
    return num_pages * getpagesize();
  }
  return 0;
}

size_t ProcessMetrics::GetPrivateBytes() const {
  WorkingSetKBytes ws_usage;
  GetWorkingSetKBytes(&ws_usage);
  return ws_usage.priv << 10;
}

// Private and Shared working set sizes are obtained from /proc/<pid>/smaps.
// When that's not available, use the values from /proc<pid>/statm as a
// close approximation.
// See http://www.pixelbeat.org/scripts/ps_mem.py
bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
  FilePath stat_file =
    FilePath("/proc").Append(IntToString(process_)).Append("smaps");
  std::string smaps;
  int private_kb = 0;
  int pss_kb = 0;
  bool have_pss = false;
  if (file_util::ReadFileToString(stat_file, &smaps) && smaps.length() > 0) {
    StringTokenizer tokenizer(smaps, ":\n");
    ParsingState state = KEY_NAME;
    std::string last_key_name;
    while (tokenizer.GetNext()) {
      switch (state) {
        case KEY_NAME:
          last_key_name = tokenizer.token();
          state = KEY_VALUE;
          break;
        case KEY_VALUE:
          if (last_key_name.empty()) {
            NOTREACHED();
            return false;
          }
          if (StartsWithASCII(last_key_name, "Private_", 1)) {
            private_kb += StringToInt(tokenizer.token());
          } else if (StartsWithASCII(last_key_name, "Pss", 1)) {
            have_pss = true;
            pss_kb += StringToInt(tokenizer.token());
          }
          state = KEY_NAME;
          break;
      }
    }
  } else {
    // Try statm if smaps is empty because of the SUID sandbox.
    // First we need to get the page size though.
    int page_size_kb = sysconf(_SC_PAGE_SIZE) / 1024;
    if (page_size_kb <= 0)
      return false;

    stat_file =
        FilePath("/proc").Append(IntToString(process_)).Append("statm");
    std::string statm;
    if (!file_util::ReadFileToString(stat_file, &statm) || statm.length() == 0)
      return false;

    std::vector<std::string> statm_vec;
    SplitString(statm, ' ', &statm_vec);
    if (statm_vec.size() != 7)
      return false;  // Not the format we expect.
    private_kb = StringToInt(statm_vec[1]) - StringToInt(statm_vec[2]);
    private_kb *= page_size_kb;
  }
  ws_usage->priv = private_kb;
  // Sharable is not calculated, as it does not provide interesting data.
  ws_usage->shareable = 0;

  ws_usage->shared = 0;
  if (have_pss)
    ws_usage->shared = pss_kb;
  return true;
}

// To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING
// in your kernel configuration.
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
  std::string proc_io_contents;
  FilePath io_file("/proc");
  io_file = io_file.Append(IntToString(process_));
  io_file = io_file.Append("io");
  if (!file_util::ReadFileToString(io_file, &proc_io_contents))
    return false;

  (*io_counters).OtherOperationCount = 0;
  (*io_counters).OtherTransferCount = 0;

  StringTokenizer tokenizer(proc_io_contents, ": \n");
  ParsingState state = KEY_NAME;
  std::string last_key_name;
  while (tokenizer.GetNext()) {
    switch (state) {
      case KEY_NAME:
        last_key_name = tokenizer.token();
        state = KEY_VALUE;
        break;
      case KEY_VALUE:
        DCHECK(!last_key_name.empty());
        if (last_key_name == "syscr") {
          (*io_counters).ReadOperationCount = StringToInt64(tokenizer.token());
        } else if (last_key_name == "syscw") {
          (*io_counters).WriteOperationCount = StringToInt64(tokenizer.token());
        } else if (last_key_name == "rchar") {
          (*io_counters).ReadTransferCount = StringToInt64(tokenizer.token());
        } else if (last_key_name == "wchar") {
          (*io_counters).WriteTransferCount = StringToInt64(tokenizer.token());
        }
        state = KEY_NAME;
        break;
    }
  }
  return true;
}


// Exposed for testing.
int ParseProcStatCPU(const std::string& input) {
  // /proc/<pid>/stat contains the process name in parens.  In case the
  // process name itself contains parens, skip past them.
  std::string::size_type rparen = input.rfind(')');
  if (rparen == std::string::npos)
    return -1;

  // From here, we expect a bunch of space-separated fields, where the
  // 0-indexed 11th and 12th are utime and stime.  On two different machines
  // I found 42 and 39 fields, so let's just expect the ones we need.
  std::vector<std::string> fields;
  SplitString(input.substr(rparen + 2), ' ', &fields);
  if (fields.size() < 13)
    return -1;  // Output not in the format we expect.

  return StringToInt(fields[11]) + StringToInt(fields[12]);
}

// Get the total CPU of a single process.  Return value is number of jiffies
// on success or -1 on error.
static int GetProcessCPU(pid_t pid) {
  // Use /proc/<pid>/task to find all threads and parse their /stat file.
  FilePath path = FilePath(StringPrintf("/proc/%d/task/", pid));

  DIR* dir = opendir(path.value().c_str());
  if (!dir) {
    PLOG(ERROR) << "opendir(" << path.value() << ")";
    return -1;
  }

  int total_cpu = 0;
  while (struct dirent* ent = readdir(dir)) {
    if (ent->d_name[0] == '.')
      continue;

    FilePath stat_path = path.AppendASCII(ent->d_name).AppendASCII("stat");
    std::string stat;
    if (file_util::ReadFileToString(stat_path, &stat)) {
      int cpu = ParseProcStatCPU(stat);
      if (cpu > 0)
        total_cpu += cpu;
    }
  }
  closedir(dir);

  return total_cpu;
}

int ProcessMetrics::GetCPUUsage() {
  // This queries the /proc-specific scaling factor which is
  // conceptually the system hertz.  To dump this value on another
  // system, try
  //   od -t dL /proc/self/auxv
  // and look for the number after 17 in the output; mine is
  //   0000040          17         100           3   134512692
  // which means the answer is 100.
  // It may be the case that this value is always 100.
  static const int kHertz = sysconf(_SC_CLK_TCK);

  struct timeval now;
  int retval = gettimeofday(&now, NULL);
  if (retval)
    return 0;
  int64 time = TimeValToMicroseconds(now);

  if (last_time_ == 0) {
    // First call, just set the last values.
    last_time_ = time;
    last_cpu_ = GetProcessCPU(process_);
    return 0;
  }

  int64 time_delta = time - last_time_;
  DCHECK_NE(time_delta, 0);
  if (time_delta == 0)
    return 0;

  int cpu = GetProcessCPU(process_);

  // We have the number of jiffies in the time period.  Convert to percentage.
  // Note this means we will go *over* 100 in the case where multiple threads
  // are together adding to more than one CPU's worth.
  int percentage = 100 * (cpu - last_cpu_) /
      (kHertz * TimeDelta::FromMicroseconds(time_delta).InSecondsF());

  last_time_ = time;
  last_cpu_ = cpu;

  return percentage;
}

namespace {

// The format of /proc/meminfo is:
//
// MemTotal:      8235324 kB
// MemFree:       1628304 kB
// Buffers:        429596 kB
// Cached:        4728232 kB
// ...
const size_t kMemTotalIndex = 1;
const size_t kMemFreeIndex = 4;
const size_t kMemBuffersIndex = 7;
const size_t kMemCacheIndex = 10;

}  // namespace

size_t GetSystemCommitCharge() {
  // Used memory is: total - free - buffers - caches
  FilePath meminfo_file("/proc/meminfo");
  std::string meminfo_data;
  if (!file_util::ReadFileToString(meminfo_file, &meminfo_data))
    LOG(ERROR) << "Failed to open /proc/meminfo.";
    return 0;
  std::vector<std::string> meminfo_fields;
  SplitStringAlongWhitespace(meminfo_data, &meminfo_fields);

  if (meminfo_fields.size() < kMemCacheIndex) {
    LOG(ERROR) << "Failed to parse /proc/meminfo.  Only found " <<
      meminfo_fields.size() << " fields.";
    return 0;
  }

  DCHECK_EQ(meminfo_fields[kMemTotalIndex-1], "MemTotal:");
  DCHECK_EQ(meminfo_fields[kMemFreeIndex-1], "MemFree:");
  DCHECK_EQ(meminfo_fields[kMemBuffersIndex-1], "Buffers:");
  DCHECK_EQ(meminfo_fields[kMemCacheIndex-1], "Cached:");

  size_t result_in_kb;
  result_in_kb = StringToInt(meminfo_fields[kMemTotalIndex]);
  result_in_kb -= StringToInt(meminfo_fields[kMemFreeIndex]);
  result_in_kb -= StringToInt(meminfo_fields[kMemBuffersIndex]);
  result_in_kb -= StringToInt(meminfo_fields[kMemCacheIndex]);

  return result_in_kb;
}

}  // namespace base