summaryrefslogtreecommitdiffstats
path: root/base/process_util_linux.cc
blob: ec45d3f3a1fff6bed64ba8a2b6350f0b194236df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Copyright (c) 2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/process_util.h"

#include <ctype.h>
#include <dirent.h>
#include <string>
#include <sys/types.h>
#include <sys/wait.h>

#include "base/file_util.h"
#include "base/logging.h"
#include "base/string_tokenizer.h"
#include "base/string_util.h"
#include "base/time.h"

namespace {

enum ParsingState {
  KEY_NAME,
  KEY_VALUE
};

}  // namespace

namespace base {

bool LaunchApp(const std::vector<std::string>& argv,
               bool wait, ProcessHandle* process_handle) {
  bool retval = true;

  char* argv_copy[argv.size() + 1];
  for (size_t i = 0; i < argv.size(); i++) {
    argv_copy[i] = new char[argv[i].size() + 1];
    strcpy(argv_copy[i], argv[i].c_str());
  }
  argv_copy[argv.size()] = NULL;

  int pid = fork();
  if (pid == 0) {
    execvp(argv_copy[0], argv_copy);
  } else if (pid < 0) {
    retval = false;
  } else {
    if (wait)
      waitpid(pid, 0, 0);

    if(process_handle)
      *process_handle = pid;
  }

  for (size_t i = 0; i < argv.size(); i++)
    delete[] argv_copy[i];

  return retval;
}

bool LaunchApp(const CommandLine& cl,
               bool wait, bool start_hidden, ProcessHandle* process_handle) {
  return LaunchApp(cl.argv(), wait, process_handle);
}

// Attempts to kill the process identified by the given process
// entry structure.  Ignores specified exit_code; linux can't force that.
// Returns true if this is successful, false otherwise.
bool KillProcess(int process_id, int exit_code, bool wait) {
  bool result = false;

  int status = kill(process_id, SIGTERM);
  if (!status && wait) {
    int tries = 60;
    // The process may not end immediately due to pending I/O
    while (tries-- > 0) {
      int pid = waitpid(process_id, &status, WNOHANG);
      if (pid == process_id) {
        result = true;
        break;
      }
      sleep(1);
    }
  }
  if (!result)
    DLOG(ERROR) << "Unable to terminate process.";
  return result;
}

bool DidProcessCrash(ProcessHandle handle) {
  int status;
  if (waitpid(handle, &status, WNOHANG)) {
    // I feel like dancing!
    return false;
  }

  if (WIFSIGNALED(status)) {
    int signum = WTERMSIG(status);
    return (signum == SIGSEGV || signum == SIGILL || signum == SIGABRT || signum == SIGFPE);
  }

  if (WIFEXITED(status)) {
    int exitcode = WEXITSTATUS(status);
    return (exitcode != 0);
  }

  return false;
}

NamedProcessIterator::NamedProcessIterator(const std::wstring& executable_name,
                                           const ProcessFilter* filter) 
    :
       executable_name_(executable_name),
       filter_(filter) {
    procfs_dir_ = opendir("/proc");
  }

NamedProcessIterator::~NamedProcessIterator() {
  if (procfs_dir_) {
    closedir(procfs_dir_);
    procfs_dir_ = 0;
  }
}

const ProcessEntry* NamedProcessIterator::NextProcessEntry() {
  bool result = false;
  do {
    result = CheckForNextProcess();
  } while (result && !IncludeEntry());

  if (result)
    return &entry_;

  return NULL;
}

bool NamedProcessIterator::CheckForNextProcess() {
  // TODO(port): skip processes owned by different UID

  dirent* slot = 0;
  const char* openparen;
  const char* closeparen;

  // Arbitrarily guess that there will never be more than 200 non-process files in /proc.
  // (Hardy has 53.)
  int skipped = 0;
  const int kSkipLimit = 200;
  while (skipped < kSkipLimit) {
    slot = readdir(procfs_dir_);
    // all done looking through /proc?
    if (!slot)
      return false;

    // If not a process, keep looking for one.
    bool notprocess = false;
    int i;
    for (i=0; i < NAME_MAX && slot->d_name[i]; ++i) {
       if (!isdigit(slot->d_name[i])) {
         notprocess = true;
         break;
       }
    }
    if (i == NAME_MAX || notprocess) {
      skipped++;
      continue;
    }

    // Read the process's status.
    char buf[NAME_MAX + 12];
    sprintf(buf, "/proc/%s/stat", slot->d_name);
    FILE *fp = fopen(buf, "r");
    if (!fp)
      return false;
    const char* result = fgets(buf, sizeof(buf), fp);
    fclose(fp);
    if (!result)
      return false;

    // Parse the status.  It is formatted like this:
    // %d (%s) %c %d ...
    // pid (name) runstate ppid
    // To avoid being fooled by names containing a closing paren, scan backwards.
    openparen = strchr(buf, '(');
    closeparen = strrchr(buf, ')');
    if (!openparen || !closeparen)
      return false;
    char runstate = closeparen[2];

    // Is the process in 'Zombie' state, i.e. dead but waiting to be reaped?
    // Allowed values: D R S T Z
    if (runstate != 'Z')
      break;

    // Nope, it's a zombie; somebody isn't cleaning up after their children.
    // (e.g. WaitForProcessesToExit doesn't clean up after dead children yet.)
    // There could be a lot of zombies, can't really decrement i here.
  }
  if (skipped >= kSkipLimit) {
    NOTREACHED();
    return false;
  }

  entry_.pid = atoi(slot->d_name);
  entry_.ppid = atoi(closeparen+3);

  // TODO(port): read pid's commandline's $0, like killall does.
  // Using the short name between openparen and closeparen won't work for long names!
  int len = closeparen - openparen - 1;
  if (len > NAME_MAX)
    len = NAME_MAX;
  memcpy(entry_.szExeFile, openparen + 1, len);
  entry_.szExeFile[len] = 0;

  return true;
}

bool NamedProcessIterator::IncludeEntry() {
  // TODO(port): make this also work for non-ASCII filenames
  bool result = strcmp(WideToASCII(executable_name_).c_str(), entry_.szExeFile) == 0 &&
      (!filter_ || filter_->Includes(entry_.pid, entry_.ppid));
  return result;
}

int GetProcessCount(const std::wstring& executable_name,
                    const ProcessFilter* filter) {
  int count = 0;

  NamedProcessIterator iter(executable_name, filter);
  while (iter.NextProcessEntry())
    ++count;
  return count;
}

bool KillProcesses(const std::wstring& executable_name, int exit_code,
                   const ProcessFilter* filter) {
  bool result = true;
  const ProcessEntry* entry;

  NamedProcessIterator iter(executable_name, filter);
  while ((entry = iter.NextProcessEntry()) != NULL)
    result = KillProcess((*entry).pid, exit_code, true) && result;

  return result;
}

bool WaitForProcessesToExit(const std::wstring& executable_name,
                            int wait_milliseconds,
                            const ProcessFilter* filter) {
  bool result = false;

  // TODO(port): This is inefficient, but works if there are multiple procs.
  // TODO(port): use waitpid to avoid leaving zombies around

  base::Time end_time = base::Time::Now() + base::TimeDelta::FromMilliseconds(wait_milliseconds);
  do {
    NamedProcessIterator iter(executable_name, filter);
    if (!iter.NextProcessEntry()) {
      result = true;
      break;
    }
    // TODO(port): Improve resolution
    sleep(1);
  } while ((base::Time::Now() - end_time) > base::TimeDelta());

  return result;
}

bool WaitForSingleProcess(ProcessHandle handle, int wait_milliseconds) {
  int status;
  waitpid(handle, &status, 0);
  return WIFEXITED(status);
}

bool CleanupProcesses(const std::wstring& executable_name,
                      int wait_milliseconds,
                      int exit_code,
                      const ProcessFilter* filter) {
  bool exited_cleanly =
    WaitForProcessesToExit(executable_name, wait_milliseconds,
                           filter);
  if (!exited_cleanly)
    KillProcesses(executable_name, exit_code, filter);
  return exited_cleanly;
}

///////////////////////////////////////////////////////////////////////////////
//// ProcessMetrics

// To have /proc/self/io file you must enable CONFIG_TASK_IO_ACCOUNTING
// in your kernel configuration.
bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) {
  std::string proc_io_contents;
  if (!file_util::ReadFileToString(L"/proc/self/io", &proc_io_contents))
    return false;

  (*io_counters).OtherOperationCount = 0;
  (*io_counters).OtherTransferCount = 0;

  StringTokenizer tokenizer(proc_io_contents, ": \n");
  ParsingState state = KEY_NAME;
  std::string last_key_name;
  while (tokenizer.GetNext()) {
    switch (state) {
      case KEY_NAME:
        last_key_name = tokenizer.token();
        state = KEY_VALUE;
        break;
      case KEY_VALUE:
        DCHECK(!last_key_name.empty());
        if (last_key_name == "syscr") {
          (*io_counters).ReadOperationCount = StringToInt64(tokenizer.token());
        } else if (last_key_name == "syscw") {
          (*io_counters).WriteOperationCount = StringToInt64(tokenizer.token());
        } else if (last_key_name == "rchar") {
          (*io_counters).ReadTransferCount = StringToInt64(tokenizer.token());
        } else if (last_key_name == "wchar") {
          (*io_counters).WriteTransferCount = StringToInt64(tokenizer.token());
        }
        state = KEY_NAME;
        break;
    }
  }
  return true;
}

}  // namespace base