summaryrefslogtreecommitdiffstats
path: root/base/process_util_mac.mm
blob: 6e49d2ca73439536a12cc8a069a093804c6c148d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/process_util.h"

#import <Cocoa/Cocoa.h>
#include <crt_externs.h>
#include <dlfcn.h>
#include <mach/mach.h>
#include <mach/mach_init.h>
#include <mach/mach_vm.h>
#include <mach/shared_region.h>
#include <mach/task.h>
#include <malloc/malloc.h>
#import <objc/runtime.h>
#include <spawn.h>
#include <sys/mman.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#include <sys/wait.h>

#include <new>
#include <string>

#include "base/debug/debugger.h"
#include "base/eintr_wrapper.h"
#include "base/hash_tables.h"
#include "base/logging.h"
#include "base/mac/mac_util.h"
#include "base/string_util.h"
#include "base/sys_info.h"
#include "base/sys_string_conversions.h"
#include "base/time.h"
#include "third_party/apple_apsl/CFBase.h"
#include "third_party/apple_apsl/malloc.h"

namespace base {

void RestoreDefaultExceptionHandler() {
  // This function is tailored to remove the Breakpad exception handler.
  // exception_mask matches s_exception_mask in
  // breakpad/src/client/mac/handler/exception_handler.cc
  const exception_mask_t exception_mask = EXC_MASK_BAD_ACCESS |
                                          EXC_MASK_BAD_INSTRUCTION |
                                          EXC_MASK_ARITHMETIC |
                                          EXC_MASK_BREAKPOINT;

  // Setting the exception port to MACH_PORT_NULL may not be entirely
  // kosher to restore the default exception handler, but in practice,
  // it results in the exception port being set to Apple Crash Reporter,
  // the desired behavior.
  task_set_exception_ports(mach_task_self(), exception_mask, MACH_PORT_NULL,
                           EXCEPTION_DEFAULT, THREAD_STATE_NONE);
}

ProcessIterator::ProcessIterator(const ProcessFilter* filter)
    : index_of_kinfo_proc_(0),
      filter_(filter) {
  // Get a snapshot of all of my processes (yes, as we loop it can go stale, but
  // but trying to find where we were in a constantly changing list is basically
  // impossible.

  int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_UID, geteuid() };

  // Since more processes could start between when we get the size and when
  // we get the list, we do a loop to keep trying until we get it.
  bool done = false;
  int try_num = 1;
  const int max_tries = 10;
  do {
    // Get the size of the buffer
    size_t len = 0;
    if (sysctl(mib, arraysize(mib), NULL, &len, NULL, 0) < 0) {
      LOG(ERROR) << "failed to get the size needed for the process list";
      kinfo_procs_.resize(0);
      done = true;
    } else {
      size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
      // Leave some spare room for process table growth (more could show up
      // between when we check and now)
      num_of_kinfo_proc += 16;
      kinfo_procs_.resize(num_of_kinfo_proc);
      len = num_of_kinfo_proc * sizeof(struct kinfo_proc);
      // Load the list of processes
      if (sysctl(mib, arraysize(mib), &kinfo_procs_[0], &len, NULL, 0) < 0) {
        // If we get a mem error, it just means we need a bigger buffer, so
        // loop around again.  Anything else is a real error and give up.
        if (errno != ENOMEM) {
          LOG(ERROR) << "failed to get the process list";
          kinfo_procs_.resize(0);
          done = true;
        }
      } else {
        // Got the list, just make sure we're sized exactly right
        size_t num_of_kinfo_proc = len / sizeof(struct kinfo_proc);
        kinfo_procs_.resize(num_of_kinfo_proc);
        done = true;
      }
    }
  } while (!done && (try_num++ < max_tries));

  if (!done) {
    LOG(ERROR) << "failed to collect the process list in a few tries";
    kinfo_procs_.resize(0);
  }
}

ProcessIterator::~ProcessIterator() {
}

bool ProcessIterator::CheckForNextProcess() {
  std::string data;
  for (; index_of_kinfo_proc_ < kinfo_procs_.size(); ++index_of_kinfo_proc_) {
    kinfo_proc& kinfo = kinfo_procs_[index_of_kinfo_proc_];

    // Skip processes just awaiting collection
    if ((kinfo.kp_proc.p_pid > 0) && (kinfo.kp_proc.p_stat == SZOMB))
      continue;

    int mib[] = { CTL_KERN, KERN_PROCARGS, kinfo.kp_proc.p_pid };

    // Find out what size buffer we need.
    size_t data_len = 0;
    if (sysctl(mib, arraysize(mib), NULL, &data_len, NULL, 0) < 0) {
      DVPLOG(1) << "failed to figure out the buffer size for a commandline";
      continue;
    }

    data.resize(data_len);
    if (sysctl(mib, arraysize(mib), &data[0], &data_len, NULL, 0) < 0) {
      DVPLOG(1) << "failed to fetch a commandline";
      continue;
    }

    // |data| contains all the command line parameters of the process, separated
    // by blocks of one or more null characters. We tokenize |data| into a
    // vector of strings using '\0' as a delimiter and populate
    // |entry_.cmd_line_args_|.
    std::string delimiters;
    delimiters.push_back('\0');
    Tokenize(data, delimiters, &entry_.cmd_line_args_);

    // |data| starts with the full executable path followed by a null character.
    // We search for the first instance of '\0' and extract everything before it
    // to populate |entry_.exe_file_|.
    size_t exec_name_end = data.find('\0');
    if (exec_name_end == std::string::npos) {
      LOG(ERROR) << "command line data didn't match expected format";
      continue;
    }

    entry_.pid_ = kinfo.kp_proc.p_pid;
    entry_.ppid_ = kinfo.kp_eproc.e_ppid;
    entry_.gid_ = kinfo.kp_eproc.e_pgid;
    size_t last_slash = data.rfind('/', exec_name_end);
    if (last_slash == std::string::npos)
      entry_.exe_file_.assign(data, 0, exec_name_end);
    else
      entry_.exe_file_.assign(data, last_slash + 1,
                              exec_name_end - last_slash - 1);
    // Start w/ the next entry next time through
    ++index_of_kinfo_proc_;
    // Done
    return true;
  }
  return false;
}

bool NamedProcessIterator::IncludeEntry() {
  return (executable_name_ == entry().exe_file() &&
          ProcessIterator::IncludeEntry());
}


// ------------------------------------------------------------------------
// NOTE: about ProcessMetrics
//
// Getting a mach task from a pid for another process requires permissions in
// general, so there doesn't really seem to be a way to do these (and spinning
// up ps to fetch each stats seems dangerous to put in a base api for anyone to
// call). Child processes ipc their port, so return something if available,
// otherwise return 0.
//

ProcessMetrics::ProcessMetrics(ProcessHandle process,
                               ProcessMetrics::PortProvider* port_provider)
    : process_(process),
      last_time_(0),
      last_system_time_(0),
      port_provider_(port_provider) {
  processor_count_ = SysInfo::NumberOfProcessors();
}

// static
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(
    ProcessHandle process,
    ProcessMetrics::PortProvider* port_provider) {
  return new ProcessMetrics(process, port_provider);
}

bool ProcessMetrics::GetIOCounters(IoCounters* io_counters) const {
  return false;
}

static bool GetTaskInfo(mach_port_t task, task_basic_info_64* task_info_data) {
  if (task == MACH_PORT_NULL)
    return false;
  mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT;
  kern_return_t kr = task_info(task,
                               TASK_BASIC_INFO_64,
                               reinterpret_cast<task_info_t>(task_info_data),
                               &count);
  // Most likely cause for failure: |task| is a zombie.
  return kr == KERN_SUCCESS;
}

size_t ProcessMetrics::GetPagefileUsage() const {
  task_basic_info_64 task_info_data;
  if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
    return 0;
  return task_info_data.virtual_size;
}

size_t ProcessMetrics::GetPeakPagefileUsage() const {
  return 0;
}

size_t ProcessMetrics::GetWorkingSetSize() const {
  task_basic_info_64 task_info_data;
  if (!GetTaskInfo(TaskForPid(process_), &task_info_data))
    return 0;
  return task_info_data.resident_size;
}

size_t ProcessMetrics::GetPeakWorkingSetSize() const {
  return 0;
}

static bool GetCPUTypeForProcess(pid_t pid, cpu_type_t* cpu_type) {
  size_t len = sizeof(*cpu_type);
  int result = sysctlbyname("sysctl.proc_cputype",
                            cpu_type,
                            &len,
                            NULL,
                            0);
  if (result != 0) {
    PLOG(ERROR) << "sysctlbyname(""sysctl.proc_cputype"")";
    return false;
  }

  return true;
}

static bool IsAddressInSharedRegion(mach_vm_address_t addr, cpu_type_t type) {
  if (type == CPU_TYPE_I386)
    return addr >= SHARED_REGION_BASE_I386 &&
           addr < (SHARED_REGION_BASE_I386 + SHARED_REGION_SIZE_I386);
  else if (type == CPU_TYPE_X86_64)
    return addr >= SHARED_REGION_BASE_X86_64 &&
           addr < (SHARED_REGION_BASE_X86_64 + SHARED_REGION_SIZE_X86_64);
  else
    return false;
}

// This is a rough approximation of the algorithm that libtop uses.
// private_bytes is the size of private resident memory.
// shared_bytes is the size of shared resident memory.
bool ProcessMetrics::GetMemoryBytes(size_t* private_bytes,
                                    size_t* shared_bytes) {
  kern_return_t kr;
  size_t private_pages_count = 0;
  size_t shared_pages_count = 0;

  if (!private_bytes && !shared_bytes)
    return true;

  mach_port_t task = TaskForPid(process_);
  if (task == MACH_PORT_NULL) {
    LOG(ERROR) << "Invalid process";
    return false;
  }

  cpu_type_t cpu_type;
  if (!GetCPUTypeForProcess(process_, &cpu_type))
    return false;

  // The same region can be referenced multiple times. To avoid double counting
  // we need to keep track of which regions we've already counted.
  base::hash_set<int> seen_objects;

  // We iterate through each VM region in the task's address map. For shared
  // memory we add up all the pages that are marked as shared. Like libtop we
  // try to avoid counting pages that are also referenced by other tasks. Since
  // we don't have access to the VM regions of other tasks the only hint we have
  // is if the address is in the shared region area.
  //
  // Private memory is much simpler. We simply count the pages that are marked
  // as private or copy on write (COW).
  //
  // See libtop_update_vm_regions in
  // http://www.opensource.apple.com/source/top/top-67/libtop.c
  mach_vm_size_t size = 0;
  for (mach_vm_address_t address = MACH_VM_MIN_ADDRESS;; address += size) {
    vm_region_top_info_data_t info;
    mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT;
    mach_port_t object_name;
    kr = mach_vm_region(task,
                        &address,
                        &size,
                        VM_REGION_TOP_INFO,
                        (vm_region_info_t)&info,
                        &info_count,
                        &object_name);
    if (kr == KERN_INVALID_ADDRESS) {
      // We're at the end of the address space.
      break;
    } else if (kr != KERN_SUCCESS) {
      LOG(ERROR) << "Calling mach_vm_region failed with error: "
                 << mach_error_string(kr);
      return false;
    }

    if (IsAddressInSharedRegion(address, cpu_type) &&
        info.share_mode != SM_PRIVATE)
      continue;

    if (info.share_mode == SM_COW && info.ref_count == 1)
      info.share_mode = SM_PRIVATE;

    switch (info.share_mode) {
      case SM_PRIVATE:
        private_pages_count += info.private_pages_resident;
        private_pages_count += info.shared_pages_resident;
        break;
      case SM_COW:
        private_pages_count += info.private_pages_resident;
        // Fall through
      case SM_SHARED:
        if (seen_objects.count(info.obj_id) == 0) {
          // Only count the first reference to this region.
          seen_objects.insert(info.obj_id);
          shared_pages_count += info.shared_pages_resident;
        }
        break;
      default:
        break;
    }
  }

  vm_size_t page_size;
  kr = host_page_size(task, &page_size);
  if (kr != KERN_SUCCESS) {
    LOG(ERROR) << "Failed to fetch host page size, error: "
               << mach_error_string(kr);
    return false;
  }

  if (private_bytes)
    *private_bytes = private_pages_count * page_size;
  if (shared_bytes)
    *shared_bytes = shared_pages_count * page_size;

  return true;
}

void ProcessMetrics::GetCommittedKBytes(CommittedKBytes* usage) const {
}

bool ProcessMetrics::GetWorkingSetKBytes(WorkingSetKBytes* ws_usage) const {
  size_t priv = GetWorkingSetSize();
  if (!priv)
    return false;
  ws_usage->priv = priv / 1024;
  ws_usage->shareable = 0;
  ws_usage->shared = 0;
  return true;
}

#define TIME_VALUE_TO_TIMEVAL(a, r) do {  \
  (r)->tv_sec = (a)->seconds;             \
  (r)->tv_usec = (a)->microseconds;       \
} while (0)

double ProcessMetrics::GetCPUUsage() {
  mach_port_t task = TaskForPid(process_);
  if (task == MACH_PORT_NULL)
    return 0;

  kern_return_t kr;

  // Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage()
  // in libtop.c), but this is more concise and gives the same results:
  task_thread_times_info thread_info_data;
  mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT;
  kr = task_info(task,
                 TASK_THREAD_TIMES_INFO,
                 reinterpret_cast<task_info_t>(&thread_info_data),
                 &thread_info_count);
  if (kr != KERN_SUCCESS) {
    // Most likely cause: |task| is a zombie.
    return 0;
  }

  task_basic_info_64 task_info_data;
  if (!GetTaskInfo(task, &task_info_data))
    return 0;

  /* Set total_time. */
  // thread info contains live time...
  struct timeval user_timeval, system_timeval, task_timeval;
  TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval);
  TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval);
  timeradd(&user_timeval, &system_timeval, &task_timeval);

  // ... task info contains terminated time.
  TIME_VALUE_TO_TIMEVAL(&task_info_data.user_time, &user_timeval);
  TIME_VALUE_TO_TIMEVAL(&task_info_data.system_time, &system_timeval);
  timeradd(&user_timeval, &task_timeval, &task_timeval);
  timeradd(&system_timeval, &task_timeval, &task_timeval);

  struct timeval now;
  int retval = gettimeofday(&now, NULL);
  if (retval)
    return 0;

  int64 time = TimeValToMicroseconds(now);
  int64 task_time = TimeValToMicroseconds(task_timeval);

  if ((last_system_time_ == 0) || (last_time_ == 0)) {
    // First call, just set the last values.
    last_system_time_ = task_time;
    last_time_ = time;
    return 0;
  }

  int64 system_time_delta = task_time - last_system_time_;
  int64 time_delta = time - last_time_;
  DCHECK_NE(0U, time_delta);
  if (time_delta == 0)
    return 0;

  // We add time_delta / 2 so the result is rounded.
  double cpu = static_cast<double>((system_time_delta * 100.0) / time_delta);

  last_system_time_ = task_time;
  last_time_ = time;

  return cpu;
}

mach_port_t ProcessMetrics::TaskForPid(ProcessHandle process) const {
  mach_port_t task = MACH_PORT_NULL;
  if (port_provider_)
    task = port_provider_->TaskForPid(process_);
  if (task == MACH_PORT_NULL && process_ == getpid())
    task = mach_task_self();
  return task;
}

// ------------------------------------------------------------------------

// Bytes committed by the system.
size_t GetSystemCommitCharge() {
  host_name_port_t host = mach_host_self();
  mach_msg_type_number_t count = HOST_VM_INFO_COUNT;
  vm_statistics_data_t data;
  kern_return_t kr = host_statistics(host, HOST_VM_INFO,
                                     reinterpret_cast<host_info_t>(&data),
                                     &count);
  if (kr) {
    LOG(WARNING) << "Failed to fetch host statistics.";
    return 0;
  }

  vm_size_t page_size;
  kr = host_page_size(host, &page_size);
  if (kr) {
    LOG(ERROR) << "Failed to fetch host page size.";
    return 0;
  }

  return (data.active_count * page_size) / 1024;
}

// ------------------------------------------------------------------------

namespace {

bool g_oom_killer_enabled;

// === C malloc/calloc/valloc/realloc/posix_memalign ===

typedef void* (*malloc_type)(struct _malloc_zone_t* zone,
                             size_t size);
typedef void* (*calloc_type)(struct _malloc_zone_t* zone,
                             size_t num_items,
                             size_t size);
typedef void* (*valloc_type)(struct _malloc_zone_t* zone,
                             size_t size);
typedef void* (*realloc_type)(struct _malloc_zone_t* zone,
                              void* ptr,
                              size_t size);
typedef void* (*memalign_type)(struct _malloc_zone_t* zone,
                               size_t alignment,
                               size_t size);

malloc_type g_old_malloc;
calloc_type g_old_calloc;
valloc_type g_old_valloc;
realloc_type g_old_realloc;
memalign_type g_old_memalign;

malloc_type g_old_malloc_purgeable;
calloc_type g_old_calloc_purgeable;
valloc_type g_old_valloc_purgeable;
realloc_type g_old_realloc_purgeable;
memalign_type g_old_memalign_purgeable;

void* oom_killer_malloc(struct _malloc_zone_t* zone,
                        size_t size) {
  void* result = g_old_malloc(zone, size);
  if (!result && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_calloc(struct _malloc_zone_t* zone,
                        size_t num_items,
                        size_t size) {
  void* result = g_old_calloc(zone, num_items, size);
  if (!result && num_items && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_valloc(struct _malloc_zone_t* zone,
                        size_t size) {
  void* result = g_old_valloc(zone, size);
  if (!result && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_realloc(struct _malloc_zone_t* zone,
                         void* ptr,
                         size_t size) {
  void* result = g_old_realloc(zone, ptr, size);
  if (!result && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_memalign(struct _malloc_zone_t* zone,
                          size_t alignment,
                          size_t size) {
  void* result = g_old_memalign(zone, alignment, size);
  // Only die if posix_memalign would have returned ENOMEM, since there are
  // other reasons why NULL might be returned (see
  // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
  if (!result && size && alignment >= sizeof(void*)
      && (alignment & (alignment - 1)) == 0) {
    debug::BreakDebugger();
  }
  return result;
}

void* oom_killer_malloc_purgeable(struct _malloc_zone_t* zone,
                                  size_t size) {
  void* result = g_old_malloc_purgeable(zone, size);
  if (!result && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_calloc_purgeable(struct _malloc_zone_t* zone,
                                  size_t num_items,
                                  size_t size) {
  void* result = g_old_calloc_purgeable(zone, num_items, size);
  if (!result && num_items && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_valloc_purgeable(struct _malloc_zone_t* zone,
                                  size_t size) {
  void* result = g_old_valloc_purgeable(zone, size);
  if (!result && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_realloc_purgeable(struct _malloc_zone_t* zone,
                                   void* ptr,
                                   size_t size) {
  void* result = g_old_realloc_purgeable(zone, ptr, size);
  if (!result && size)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_memalign_purgeable(struct _malloc_zone_t* zone,
                                    size_t alignment,
                                    size_t size) {
  void* result = g_old_memalign_purgeable(zone, alignment, size);
  // Only die if posix_memalign would have returned ENOMEM, since there are
  // other reasons why NULL might be returned (see
  // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c ).
  if (!result && size && alignment >= sizeof(void*)
      && (alignment & (alignment - 1)) == 0) {
    debug::BreakDebugger();
  }
  return result;
}

// === C++ operator new ===

void oom_killer_new() {
  debug::BreakDebugger();
}

// === Core Foundation CFAllocators ===

bool CanGetContextForCFAllocator() {
  // TODO(avi): remove at final release; http://crbug.com/74589
  if (base::mac::IsOSLion()) {
    NSLog(@"Unsure about the internals of CFAllocator but going to patch them "
           "anyway. Watch out for crashes inside of CFAllocatorAllocate.");
  }
  return !base::mac::IsOSLaterThanLion();
}

CFAllocatorContext* ContextForCFAllocator(CFAllocatorRef allocator) {
  if (base::mac::IsOSLeopard() || base::mac::IsOSSnowLeopard()) {
    ChromeCFAllocatorLeopards* our_allocator =
        const_cast<ChromeCFAllocatorLeopards*>(
            reinterpret_cast<const ChromeCFAllocatorLeopards*>(allocator));
    return &our_allocator->_context;
  } else if (base::mac::IsOSLion()) {
    ChromeCFAllocatorLion* our_allocator =
        const_cast<ChromeCFAllocatorLion*>(
            reinterpret_cast<const ChromeCFAllocatorLion*>(allocator));
    return &our_allocator->_context;
  } else {
    return NULL;
  }
}

CFAllocatorAllocateCallBack g_old_cfallocator_system_default;
CFAllocatorAllocateCallBack g_old_cfallocator_malloc;
CFAllocatorAllocateCallBack g_old_cfallocator_malloc_zone;

void* oom_killer_cfallocator_system_default(CFIndex alloc_size,
                                            CFOptionFlags hint,
                                            void* info) {
  void* result = g_old_cfallocator_system_default(alloc_size, hint, info);
  if (!result)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_cfallocator_malloc(CFIndex alloc_size,
                                    CFOptionFlags hint,
                                    void* info) {
  void* result = g_old_cfallocator_malloc(alloc_size, hint, info);
  if (!result)
    debug::BreakDebugger();
  return result;
}

void* oom_killer_cfallocator_malloc_zone(CFIndex alloc_size,
                                         CFOptionFlags hint,
                                         void* info) {
  void* result = g_old_cfallocator_malloc_zone(alloc_size, hint, info);
  if (!result)
    debug::BreakDebugger();
  return result;
}

// === Cocoa NSObject allocation ===

typedef id (*allocWithZone_t)(id, SEL, NSZone*);
allocWithZone_t g_old_allocWithZone;

id oom_killer_allocWithZone(id self, SEL _cmd, NSZone* zone)
{
  id result = g_old_allocWithZone(self, _cmd, zone);
  if (!result)
    debug::BreakDebugger();
  return result;
}

}  // namespace

malloc_zone_t* GetPurgeableZone() {
  // malloc_default_purgeable_zone only exists on >= 10.6. Use dlsym to grab it
  // at runtime because it may not be present in the SDK used for compilation.
  typedef malloc_zone_t* (*malloc_default_purgeable_zone_t)(void);
  malloc_default_purgeable_zone_t malloc_purgeable_zone =
      reinterpret_cast<malloc_default_purgeable_zone_t>(
          dlsym(RTLD_DEFAULT, "malloc_default_purgeable_zone"));
  if (malloc_purgeable_zone)
    return malloc_purgeable_zone();
  return NULL;
}

void EnableTerminationOnOutOfMemory() {
  if (g_oom_killer_enabled)
    return;

  g_oom_killer_enabled = true;

  // === C malloc/calloc/valloc/realloc/posix_memalign ===

  // This approach is not perfect, as requests for amounts of memory larger than
  // MALLOC_ABSOLUTE_MAX_SIZE (currently SIZE_T_MAX - (2 * PAGE_SIZE)) will
  // still fail with a NULL rather than dying (see
  // http://opensource.apple.com/source/Libc/Libc-583/gen/malloc.c for details).
  // Unfortunately, it's the best we can do. Also note that this does not affect
  // allocations from non-default zones.

  CHECK(!g_old_malloc && !g_old_calloc && !g_old_valloc && !g_old_realloc &&
        !g_old_memalign) << "Old allocators unexpectedly non-null";

  CHECK(!g_old_malloc_purgeable && !g_old_calloc_purgeable &&
        !g_old_valloc_purgeable && !g_old_realloc_purgeable &&
        !g_old_memalign_purgeable) << "Old allocators unexpectedly non-null";

  // See http://trac.webkit.org/changeset/53362/trunk/Tools/DumpRenderTree/mac
  bool zone_allocators_protected = base::mac::IsOSLionOrLater();

  ChromeMallocZone* default_zone =
      reinterpret_cast<ChromeMallocZone*>(malloc_default_zone());
  ChromeMallocZone* purgeable_zone =
      reinterpret_cast<ChromeMallocZone*>(GetPurgeableZone());

  vm_address_t page_start_default = NULL;
  vm_address_t page_start_purgeable = NULL;
  vm_size_t len_default = 0;
  vm_size_t len_purgeable = 0;
  if (zone_allocators_protected) {
    page_start_default = reinterpret_cast<vm_address_t>(default_zone) &
        static_cast<vm_size_t>(~(getpagesize() - 1));
    len_default = reinterpret_cast<vm_address_t>(default_zone) -
        page_start_default + sizeof(ChromeMallocZone);
    mprotect(reinterpret_cast<void*>(page_start_default), len_default,
             PROT_READ | PROT_WRITE);

    if (purgeable_zone) {
      page_start_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) &
          static_cast<vm_size_t>(~(getpagesize() - 1));
      len_purgeable = reinterpret_cast<vm_address_t>(purgeable_zone) -
          page_start_purgeable + sizeof(ChromeMallocZone);
      mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable,
               PROT_READ | PROT_WRITE);
    }
  }

  // Default zone

  g_old_malloc = default_zone->malloc;
  g_old_calloc = default_zone->calloc;
  g_old_valloc = default_zone->valloc;
  g_old_realloc = default_zone->realloc;
  CHECK(g_old_malloc && g_old_calloc && g_old_valloc && g_old_realloc)
      << "Failed to get system allocation functions.";

  default_zone->malloc = oom_killer_malloc;
  default_zone->calloc = oom_killer_calloc;
  default_zone->valloc = oom_killer_valloc;
  default_zone->realloc = oom_killer_realloc;

  if (default_zone->version >= 5) {
    g_old_memalign = default_zone->memalign;
    if (g_old_memalign)
      default_zone->memalign = oom_killer_memalign;
  }

  // Purgeable zone (if it exists)

  if (purgeable_zone) {
    g_old_malloc_purgeable = purgeable_zone->malloc;
    g_old_calloc_purgeable = purgeable_zone->calloc;
    g_old_valloc_purgeable = purgeable_zone->valloc;
    g_old_realloc_purgeable = purgeable_zone->realloc;
    CHECK(g_old_malloc_purgeable && g_old_calloc_purgeable &&
          g_old_valloc_purgeable && g_old_realloc_purgeable)
        << "Failed to get system allocation functions.";

    purgeable_zone->malloc = oom_killer_malloc_purgeable;
    purgeable_zone->calloc = oom_killer_calloc_purgeable;
    purgeable_zone->valloc = oom_killer_valloc_purgeable;
    purgeable_zone->realloc = oom_killer_realloc_purgeable;

    if (purgeable_zone->version >= 5) {
      g_old_memalign_purgeable = purgeable_zone->memalign;
      if (g_old_memalign_purgeable)
        purgeable_zone->memalign = oom_killer_memalign_purgeable;
    }
  }

  if (zone_allocators_protected) {
    mprotect(reinterpret_cast<void*>(page_start_default), len_default,
             PROT_READ);
    if (purgeable_zone) {
      mprotect(reinterpret_cast<void*>(page_start_purgeable), len_purgeable,
               PROT_READ);
    }
  }

  // === C malloc_zone_batch_malloc ===

  // batch_malloc is omitted because the default malloc zone's implementation
  // only supports batch_malloc for "tiny" allocations from the free list. It
  // will fail for allocations larger than "tiny", and will only allocate as
  // many blocks as it's able to from the free list. These factors mean that it
  // can return less than the requested memory even in a non-out-of-memory
  // situation. There's no good way to detect whether a batch_malloc failure is
  // due to these other factors, or due to genuine memory or address space
  // exhaustion. The fact that it only allocates space from the "tiny" free list
  // means that it's likely that a failure will not be due to memory exhaustion.
  // Similarly, these constraints on batch_malloc mean that callers must always
  // be expecting to receive less memory than was requested, even in situations
  // where memory pressure is not a concern. Finally, the only public interface
  // to batch_malloc is malloc_zone_batch_malloc, which is specific to the
  // system's malloc implementation. It's unlikely that anyone's even heard of
  // it.

  // === C++ operator new ===

  // Yes, operator new does call through to malloc, but this will catch failures
  // that our imperfect handling of malloc cannot.

  std::set_new_handler(oom_killer_new);

  // === Core Foundation CFAllocators ===

  // This will not catch allocation done by custom allocators, but will catch
  // all allocation done by system-provided ones.

  CHECK(!g_old_cfallocator_system_default && !g_old_cfallocator_malloc &&
        !g_old_cfallocator_malloc_zone)
      << "Old allocators unexpectedly non-null";

  bool cf_allocator_internals_known = CanGetContextForCFAllocator();

  if (cf_allocator_internals_known) {
    CFAllocatorContext* context =
        ContextForCFAllocator(kCFAllocatorSystemDefault);
    CHECK(context) << "Failed to get context for kCFAllocatorSystemDefault.";
    g_old_cfallocator_system_default = context->allocate;
    CHECK(g_old_cfallocator_system_default)
        << "Failed to get kCFAllocatorSystemDefault allocation function.";
    context->allocate = oom_killer_cfallocator_system_default;

    context = ContextForCFAllocator(kCFAllocatorMalloc);
    CHECK(context) << "Failed to get context for kCFAllocatorMalloc.";
    g_old_cfallocator_malloc = context->allocate;
    CHECK(g_old_cfallocator_malloc)
        << "Failed to get kCFAllocatorMalloc allocation function.";
    context->allocate = oom_killer_cfallocator_malloc;

    context = ContextForCFAllocator(kCFAllocatorMallocZone);
    CHECK(context) << "Failed to get context for kCFAllocatorMallocZone.";
    g_old_cfallocator_malloc_zone = context->allocate;
    CHECK(g_old_cfallocator_malloc_zone)
        << "Failed to get kCFAllocatorMallocZone allocation function.";
    context->allocate = oom_killer_cfallocator_malloc_zone;
  } else {
    NSLog(@"Internals of CFAllocator not known; out-of-memory failures via "
        "CFAllocator will not result in termination. http://crbug.com/45650");
  }

  // === Cocoa NSObject allocation ===

  // Note that both +[NSObject new] and +[NSObject alloc] call through to
  // +[NSObject allocWithZone:].

  CHECK(!g_old_allocWithZone)
      << "Old allocator unexpectedly non-null";

  Class nsobject_class = [NSObject class];
  Method orig_method = class_getClassMethod(nsobject_class,
                                            @selector(allocWithZone:));
  g_old_allocWithZone = reinterpret_cast<allocWithZone_t>(
      method_getImplementation(orig_method));
  CHECK(g_old_allocWithZone)
      << "Failed to get allocWithZone allocation function.";
  method_setImplementation(orig_method,
                           reinterpret_cast<IMP>(oom_killer_allocWithZone));
}

ProcessId GetParentProcessId(ProcessHandle process) {
  struct kinfo_proc info;
  size_t length = sizeof(struct kinfo_proc);
  int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, process };
  if (sysctl(mib, 4, &info, &length, NULL, 0) < 0) {
    PLOG(ERROR) << "sysctl";
    return -1;
  }
  if (length == 0)
    return -1;
  return info.kp_eproc.e_ppid;
}

}  // namespace base