1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <limits>
#include <set>
#include "base/compiler_specific.h"
#include "base/debug_util.h"
#include "base/eintr_wrapper.h"
#include "base/logging.h"
#include "base/platform_thread.h"
#include "base/process_util.h"
#include "base/rand_util.h"
#include "base/scoped_ptr.h"
#include "base/sys_info.h"
#include "base/time.h"
#include "base/waitable_event.h"
#if defined(OS_MACOSX)
#include "base/mach_ipc_mac.h"
#endif
const int kMicrosecondsPerSecond = 1000000;
namespace base {
namespace {
int WaitpidWithTimeout(ProcessHandle handle, int64 wait_milliseconds,
bool* success) {
// This POSIX version of this function only guarantees that we wait no less
// than |wait_milliseconds| for the proces to exit. The child process may
// exit sometime before the timeout has ended but we may still block for
// up to 0.25 seconds after the fact.
//
// waitpid() has no direct support on POSIX for specifying a timeout, you can
// either ask it to block indefinitely or return immediately (WNOHANG).
// When a child process terminates a SIGCHLD signal is sent to the parent.
// Catching this signal would involve installing a signal handler which may
// affect other parts of the application and would be difficult to debug.
//
// Our strategy is to call waitpid() once up front to check if the process
// has already exited, otherwise to loop for wait_milliseconds, sleeping for
// at most 0.25 secs each time using usleep() and then calling waitpid().
//
// usleep() is speced to exit if a signal is received for which a handler
// has been installed. This means that when a SIGCHLD is sent, it will exit
// depending on behavior external to this function.
//
// This function is used primarily for unit tests, if we want to use it in
// the application itself it would probably be best to examine other routes.
int status = -1;
pid_t ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
static const int64 kQuarterSecondInMicroseconds = kMicrosecondsPerSecond / 4;
// If the process hasn't exited yet, then sleep and try again.
Time wakeup_time = Time::Now() + TimeDelta::FromMilliseconds(
wait_milliseconds);
while (ret_pid == 0) {
Time now = Time::Now();
if (now > wakeup_time)
break;
// Guaranteed to be non-negative!
int64 sleep_time_usecs = (wakeup_time - now).InMicroseconds();
// Don't sleep for more than 0.25 secs at a time.
if (sleep_time_usecs > kQuarterSecondInMicroseconds) {
sleep_time_usecs = kQuarterSecondInMicroseconds;
}
// usleep() will return 0 and set errno to EINTR on receipt of a signal
// such as SIGCHLD.
usleep(sleep_time_usecs);
ret_pid = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
}
if (success)
*success = (ret_pid != -1);
return status;
}
void StackDumpSignalHandler(int signal) {
StackTrace().PrintBacktrace();
_exit(1);
}
} // namespace
ProcessId GetCurrentProcId() {
return getpid();
}
ProcessHandle GetCurrentProcessHandle() {
return GetCurrentProcId();
}
bool OpenProcessHandle(ProcessId pid, ProcessHandle* handle) {
// On Posix platforms, process handles are the same as PIDs, so we
// don't need to do anything.
*handle = pid;
return true;
}
bool OpenPrivilegedProcessHandle(ProcessId pid, ProcessHandle* handle) {
// On POSIX permissions are checked for each operation on process,
// not when opening a "handle".
return OpenProcessHandle(pid, handle);
}
void CloseProcessHandle(ProcessHandle process) {
// See OpenProcessHandle, nothing to do.
return;
}
ProcessId GetProcId(ProcessHandle process) {
return process;
}
// Attempts to kill the process identified by the given process
// entry structure. Ignores specified exit_code; posix can't force that.
// Returns true if this is successful, false otherwise.
bool KillProcess(ProcessHandle process_id, int exit_code, bool wait) {
DCHECK_GT(process_id, 1) << " tried to kill invalid process_id";
if (process_id <= 1)
return false;
bool result = kill(process_id, SIGTERM) == 0;
if (result && wait) {
int tries = 60;
// The process may not end immediately due to pending I/O
bool exited = false;
while (tries-- > 0) {
pid_t pid = HANDLE_EINTR(waitpid(process_id, NULL, WNOHANG));
if (pid == process_id) {
exited = true;
break;
}
sleep(1);
}
if (!exited)
result = kill(process_id, SIGKILL) == 0;
}
if (!result)
DPLOG(ERROR) << "Unable to terminate process " << process_id;
return result;
}
// A class to handle auto-closing of DIR*'s.
class ScopedDIRClose {
public:
inline void operator()(DIR* x) const {
if (x) {
closedir(x);
}
}
};
typedef scoped_ptr_malloc<DIR, ScopedDIRClose> ScopedDIR;
void CloseSuperfluousFds(const base::InjectiveMultimap& saved_mapping) {
#if defined(OS_LINUX)
static const rlim_t kSystemDefaultMaxFds = 8192;
static const char fd_dir[] = "/proc/self/fd";
#elif defined(OS_MACOSX)
static const rlim_t kSystemDefaultMaxFds = 256;
static const char fd_dir[] = "/dev/fd";
#elif defined(OS_SOLARIS)
static const rlim_t kSystemDefaultMaxFds = 8192;
static const char fd_dir[] = "/dev/fd";
#elif defined(OS_FREEBSD)
static const rlim_t kSystemDefaultMaxFds = 8192;
static const char fd_dir[] = "/dev/fd";
#elif defined(OS_OPENBSD)
static const rlim_t kSystemDefaultMaxFds = 256;
static const char fd_dir[] = "/dev/fd";
#endif
std::set<int> saved_fds;
// Get the maximum number of FDs possible.
struct rlimit nofile;
rlim_t max_fds;
if (getrlimit(RLIMIT_NOFILE, &nofile)) {
// getrlimit failed. Take a best guess.
max_fds = kSystemDefaultMaxFds;
DLOG(ERROR) << "getrlimit(RLIMIT_NOFILE) failed: " << errno;
} else {
max_fds = nofile.rlim_cur;
}
if (max_fds > INT_MAX)
max_fds = INT_MAX;
// Don't close stdin, stdout and stderr
saved_fds.insert(STDIN_FILENO);
saved_fds.insert(STDOUT_FILENO);
saved_fds.insert(STDERR_FILENO);
for (base::InjectiveMultimap::const_iterator
i = saved_mapping.begin(); i != saved_mapping.end(); ++i) {
saved_fds.insert(i->dest);
}
ScopedDIR dir_closer(opendir(fd_dir));
DIR *dir = dir_closer.get();
if (NULL == dir) {
DLOG(ERROR) << "Unable to open " << fd_dir;
// Fallback case: Try every possible fd.
for (rlim_t i = 0; i < max_fds; ++i) {
const int fd = static_cast<int>(i);
if (saved_fds.find(fd) != saved_fds.end())
continue;
// Since we're just trying to close anything we can find,
// ignore any error return values of close().
int unused ALLOW_UNUSED = HANDLE_EINTR(close(fd));
}
return;
}
int dir_fd = dirfd(dir);
struct dirent *ent;
while ((ent = readdir(dir))) {
// Skip . and .. entries.
if (ent->d_name[0] == '.')
continue;
char *endptr;
errno = 0;
const long int fd = strtol(ent->d_name, &endptr, 10);
if (ent->d_name[0] == 0 || *endptr || fd < 0 || errno)
continue;
if (saved_fds.find(fd) != saved_fds.end())
continue;
if (fd == dir_fd)
continue;
// When running under Valgrind, Valgrind opens several FDs for its
// own use and will complain if we try to close them. All of
// these FDs are >= |max_fds|, so we can check against that here
// before closing. See https://bugs.kde.org/show_bug.cgi?id=191758
if (fd < static_cast<int>(max_fds)) {
int ret = HANDLE_EINTR(close(fd));
DPCHECK(ret == 0);
}
}
}
// Sets all file descriptors to close on exec except for stdin, stdout
// and stderr.
// TODO(agl): Remove this function. It's fundamentally broken for multithreaded
// apps.
void SetAllFDsToCloseOnExec() {
#if defined(OS_LINUX)
const char fd_dir[] = "/proc/self/fd";
#elif defined(OS_MACOSX) || defined(OS_FREEBSD) || defined(OS_SOLARIS)
const char fd_dir[] = "/dev/fd";
#endif
ScopedDIR dir_closer(opendir(fd_dir));
DIR *dir = dir_closer.get();
if (NULL == dir) {
DLOG(ERROR) << "Unable to open " << fd_dir;
return;
}
struct dirent *ent;
while ((ent = readdir(dir))) {
// Skip . and .. entries.
if (ent->d_name[0] == '.')
continue;
int i = atoi(ent->d_name);
// We don't close stdin, stdout or stderr.
if (i <= STDERR_FILENO)
continue;
int flags = fcntl(i, F_GETFD);
if ((flags == -1) || (fcntl(i, F_SETFD, flags | FD_CLOEXEC) == -1)) {
DLOG(ERROR) << "fcntl failure.";
}
}
}
#if defined(OS_MACOSX)
static std::string MachErrorCode(kern_return_t err) {
return StringPrintf("0x%x %s", err, mach_error_string(err));
}
// Forks the current process and returns the child's |task_t| in the parent
// process.
static pid_t fork_and_get_task(task_t* child_task) {
const int kTimeoutMs = 100;
kern_return_t err;
// Put a random number into the channel name, so that a compromised renderer
// can't pretend being the child that's forked off.
std::string mach_connection_name = StringPrintf(
"com.google.Chrome.samplingfork.%p.%d",
child_task, base::RandInt(0, std::numeric_limits<int>::max()));
ReceivePort parent_recv_port(mach_connection_name.c_str());
// Error handling philosophy: If Mach IPC fails, don't touch |child_task| but
// return a valid pid. If IPC fails in the child, the parent will have to wait
// until kTimeoutMs is over. This is not optimal, but I've never seen it
// happen, and stuff should still mostly work.
pid_t pid = fork();
switch (pid) {
case -1:
return pid;
case 0: { // child
MachSendMessage child_message(/* id= */0);
if (!child_message.AddDescriptor(mach_task_self())) {
LOG(ERROR) << "child AddDescriptor(mach_task_self()) failed.";
return pid;
}
MachPortSender child_sender(mach_connection_name.c_str());
err = child_sender.SendMessage(child_message, kTimeoutMs);
if (err != KERN_SUCCESS) {
LOG(ERROR) << "child SendMessage() failed: " << MachErrorCode(err);
return pid;
}
break;
}
default: { // parent
MachReceiveMessage child_message;
err = parent_recv_port.WaitForMessage(&child_message, kTimeoutMs);
if (err != KERN_SUCCESS) {
LOG(ERROR) << "parent WaitForMessage() failed: " << MachErrorCode(err);
return pid;
}
if (child_message.GetTranslatedPort(0) == MACH_PORT_NULL) {
LOG(ERROR) << "parent GetTranslatedPort(0) failed.";
return pid;
}
*child_task = child_message.GetTranslatedPort(0);
break;
}
}
return pid;
}
bool LaunchApp(const std::vector<std::string>& argv,
const environment_vector& environ,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle) {
return LaunchAppAndGetTask(
argv, environ, fds_to_remap, wait, NULL, process_handle);
}
#endif // defined(OS_MACOSX)
#if defined(OS_MACOSX)
bool LaunchAppAndGetTask(
#else
bool LaunchApp(
#endif
const std::vector<std::string>& argv,
const environment_vector& environ,
const file_handle_mapping_vector& fds_to_remap,
bool wait,
#if defined(OS_MACOSX)
task_t* task_handle,
#endif
ProcessHandle* process_handle) {
pid_t pid;
#if defined(OS_MACOSX)
if (task_handle == NULL) {
pid = fork();
} else {
// On OS X, the task_t for a process is needed for several reasons. Sadly,
// the function task_for_pid() requires privileges a normal user doesn't
// have. Instead, a short-lived Mach IPC connection is opened between parent
// and child, and the child sends its task_t to the parent at fork time.
*task_handle = MACH_PORT_NULL;
pid = fork_and_get_task(task_handle);
}
#else
pid = fork();
#endif
if (pid < 0)
return false;
if (pid == 0) {
// Child process
#if defined(OS_MACOSX)
RestoreDefaultExceptionHandler();
#endif
InjectiveMultimap fd_shuffle;
for (file_handle_mapping_vector::const_iterator
it = fds_to_remap.begin(); it != fds_to_remap.end(); ++it) {
fd_shuffle.push_back(InjectionArc(it->first, it->second, false));
}
for (environment_vector::const_iterator it = environ.begin();
it != environ.end(); ++it) {
if (it->first.empty())
continue;
if (it->second.empty()) {
unsetenv(it->first.c_str());
} else {
setenv(it->first.c_str(), it->second.c_str(), 1);
}
}
// Obscure fork() rule: in the child, if you don't end up doing exec*(),
// you call _exit() instead of exit(). This is because _exit() does not
// call any previously-registered (in the parent) exit handlers, which
// might do things like block waiting for threads that don't even exist
// in the child.
if (!ShuffleFileDescriptors(fd_shuffle))
_exit(127);
// If we are using the SUID sandbox, it sets a magic environment variable
// ("SBX_D"), so we remove that variable from the environment here on the
// off chance that it's already set.
unsetenv("SBX_D");
CloseSuperfluousFds(fd_shuffle);
scoped_array<char*> argv_cstr(new char*[argv.size() + 1]);
for (size_t i = 0; i < argv.size(); i++)
argv_cstr[i] = const_cast<char*>(argv[i].c_str());
argv_cstr[argv.size()] = NULL;
execvp(argv_cstr[0], argv_cstr.get());
PLOG(ERROR) << "LaunchApp: execvp(" << argv_cstr[0] << ") failed";
_exit(127);
} else {
// Parent process
if (wait) {
pid_t ret = HANDLE_EINTR(waitpid(pid, 0, 0));
DPCHECK(ret > 0);
}
if (process_handle)
*process_handle = pid;
}
return true;
}
bool LaunchApp(const std::vector<std::string>& argv,
const file_handle_mapping_vector& fds_to_remap,
bool wait, ProcessHandle* process_handle) {
base::environment_vector no_env;
return LaunchApp(argv, no_env, fds_to_remap, wait, process_handle);
}
bool LaunchApp(const CommandLine& cl,
bool wait, bool start_hidden,
ProcessHandle* process_handle) {
file_handle_mapping_vector no_files;
return LaunchApp(cl.argv(), no_files, wait, process_handle);
}
#if !defined(OS_MACOSX)
ProcessMetrics::ProcessMetrics(ProcessHandle process)
#else
ProcessMetrics::ProcessMetrics(ProcessHandle process,
ProcessMetrics::PortProvider* port_provider)
#endif
: process_(process),
last_time_(0),
last_system_time_(0)
#if defined(OS_LINUX)
, last_cpu_(0)
#elif defined(OS_MACOSX)
, port_provider_(port_provider)
#endif
{
processor_count_ = base::SysInfo::NumberOfProcessors();
}
// static
#if !defined(OS_MACOSX)
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) {
return new ProcessMetrics(process);
}
#else
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(
ProcessHandle process,
ProcessMetrics::PortProvider* port_provider) {
return new ProcessMetrics(process, port_provider);
}
#endif
ProcessMetrics::~ProcessMetrics() { }
void EnableTerminationOnHeapCorruption() {
// On POSIX, there nothing to do AFAIK.
}
bool EnableInProcessStackDumping() {
// When running in an application, our code typically expects SIGPIPE
// to be ignored. Therefore, when testing that same code, it should run
// with SIGPIPE ignored as well.
struct sigaction action;
action.sa_handler = SIG_IGN;
action.sa_flags = 0;
sigemptyset(&action.sa_mask);
bool success = (sigaction(SIGPIPE, &action, NULL) == 0);
// TODO(phajdan.jr): Catch other crashy signals, like SIGABRT.
success &= (signal(SIGSEGV, &StackDumpSignalHandler) != SIG_ERR);
success &= (signal(SIGILL, &StackDumpSignalHandler) != SIG_ERR);
success &= (signal(SIGBUS, &StackDumpSignalHandler) != SIG_ERR);
success &= (signal(SIGFPE, &StackDumpSignalHandler) != SIG_ERR);
return success;
}
void AttachToConsole() {
// On POSIX, there nothing to do AFAIK. Maybe create a new console if none
// exist?
}
void RaiseProcessToHighPriority() {
// On POSIX, we don't actually do anything here. We could try to nice() or
// setpriority() or sched_getscheduler, but these all require extra rights.
}
bool DidProcessCrash(bool* child_exited, ProcessHandle handle) {
int status;
const pid_t result = HANDLE_EINTR(waitpid(handle, &status, WNOHANG));
if (result == -1) {
PLOG(ERROR) << "waitpid(" << handle << ")";
if (child_exited)
*child_exited = false;
return false;
} else if (result == 0) {
// the child hasn't exited yet.
if (child_exited)
*child_exited = false;
return false;
}
if (child_exited)
*child_exited = true;
if (WIFSIGNALED(status)) {
switch (WTERMSIG(status)) {
case SIGSEGV:
case SIGILL:
case SIGABRT:
case SIGFPE:
return true;
default:
return false;
}
}
if (WIFEXITED(status))
return WEXITSTATUS(status) != 0;
return false;
}
bool WaitForExitCode(ProcessHandle handle, int* exit_code) {
int status;
if (HANDLE_EINTR(waitpid(handle, &status, 0)) == -1) {
NOTREACHED();
return false;
}
if (WIFEXITED(status)) {
*exit_code = WEXITSTATUS(status);
return true;
}
// If it didn't exit cleanly, it must have been signaled.
DCHECK(WIFSIGNALED(status));
return false;
}
bool WaitForSingleProcess(ProcessHandle handle, int64 wait_milliseconds) {
bool waitpid_success;
int status;
if (wait_milliseconds == base::kNoTimeout)
waitpid_success = (HANDLE_EINTR(waitpid(handle, &status, 0)) != -1);
else
status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success);
if (status != -1) {
DCHECK(waitpid_success);
return WIFEXITED(status);
} else {
return false;
}
}
bool CrashAwareSleep(ProcessHandle handle, int64 wait_milliseconds) {
bool waitpid_success;
int status = WaitpidWithTimeout(handle, wait_milliseconds, &waitpid_success);
if (status != -1) {
DCHECK(waitpid_success);
return !(WIFEXITED(status) || WIFSIGNALED(status));
} else {
// If waitpid returned with an error, then the process doesn't exist
// (which most probably means it didn't exist before our call).
return waitpid_success;
}
}
int64 TimeValToMicroseconds(const struct timeval& tv) {
return tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec;
}
// Executes the application specified by |cl| and wait for it to exit. Stores
// the output (stdout) in |output|. If |do_search_path| is set, it searches the
// path for the application; in that case, |envp| must be null, and it will use
// the current environment. If |do_search_path| is false, |cl| should fully
// specify the path of the application, and |envp| will be used as the
// environment. Redirects stderr to /dev/null. Returns true on success
// (application launched and exited cleanly, with exit code indicating success).
// |output| is modified only when the function finished successfully.
static bool GetAppOutputInternal(const CommandLine& cl, char* const envp[],
std::string* output, size_t max_output,
bool do_search_path) {
int pipe_fd[2];
pid_t pid;
// Either |do_search_path| should be false or |envp| should be null, but not
// both.
DCHECK(!do_search_path ^ !envp);
if (pipe(pipe_fd) < 0)
return false;
switch (pid = fork()) {
case -1: // error
close(pipe_fd[0]);
close(pipe_fd[1]);
return false;
case 0: // child
{
#if defined(OS_MACOSX)
RestoreDefaultExceptionHandler();
#endif
// Obscure fork() rule: in the child, if you don't end up doing exec*(),
// you call _exit() instead of exit(). This is because _exit() does not
// call any previously-registered (in the parent) exit handlers, which
// might do things like block waiting for threads that don't even exist
// in the child.
int dev_null = open("/dev/null", O_WRONLY);
if (dev_null < 0)
_exit(127);
InjectiveMultimap fd_shuffle;
fd_shuffle.push_back(InjectionArc(pipe_fd[1], STDOUT_FILENO, true));
fd_shuffle.push_back(InjectionArc(dev_null, STDERR_FILENO, true));
fd_shuffle.push_back(InjectionArc(dev_null, STDIN_FILENO, true));
if (!ShuffleFileDescriptors(fd_shuffle))
_exit(127);
CloseSuperfluousFds(fd_shuffle);
const std::vector<std::string> argv = cl.argv();
scoped_array<char*> argv_cstr(new char*[argv.size() + 1]);
for (size_t i = 0; i < argv.size(); i++)
argv_cstr[i] = const_cast<char*>(argv[i].c_str());
argv_cstr[argv.size()] = NULL;
if (do_search_path)
execvp(argv_cstr[0], argv_cstr.get());
else
execve(argv_cstr[0], argv_cstr.get(), envp);
_exit(127);
}
default: // parent
{
// Close our writing end of pipe now. Otherwise later read would not
// be able to detect end of child's output (in theory we could still
// write to the pipe).
close(pipe_fd[1]);
char buffer[256];
std::string output_buf;
size_t output_buf_left = max_output;
ssize_t bytes_read = 1; // A lie to properly handle |max_output == 0|
// case in the logic below.
while (output_buf_left > 0) {
bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer,
std::min(output_buf_left, sizeof(buffer))));
if (bytes_read <= 0)
break;
output_buf.append(buffer, bytes_read);
output_buf_left -= static_cast<size_t>(bytes_read);
}
close(pipe_fd[0]);
// Always wait for exit code (even if we know we'll declare success).
int exit_code = EXIT_FAILURE;
bool success = WaitForExitCode(pid, &exit_code);
// If we stopped because we read as much as we wanted, we always declare
// success (because the child may exit due to |SIGPIPE|).
if (output_buf_left || bytes_read <= 0) {
if (!success || exit_code != EXIT_SUCCESS)
return false;
}
output->swap(output_buf);
return true;
}
}
}
bool GetAppOutput(const CommandLine& cl, std::string* output) {
// Run |execve()| with the current environment and store "unlimited" data.
return GetAppOutputInternal(cl, NULL, output,
std::numeric_limits<std::size_t>::max(), true);
}
// TODO(viettrungluu): Conceivably, we should have a timeout as well, so we
// don't hang if what we're calling hangs.
bool GetAppOutputRestricted(const CommandLine& cl,
std::string* output, size_t max_output) {
// Run |execve()| with the empty environment.
char* const empty_environ = NULL;
return GetAppOutputInternal(cl, &empty_environ, output, max_output, false);
}
int GetProcessCount(const std::wstring& executable_name,
const ProcessFilter* filter) {
int count = 0;
NamedProcessIterator iter(executable_name, filter);
while (iter.NextProcessEntry())
++count;
return count;
}
bool KillProcesses(const std::wstring& executable_name, int exit_code,
const ProcessFilter* filter) {
bool result = true;
const ProcessEntry* entry;
NamedProcessIterator iter(executable_name, filter);
while ((entry = iter.NextProcessEntry()) != NULL)
result = KillProcess((*entry).pid, exit_code, true) && result;
return result;
}
bool WaitForProcessesToExit(const std::wstring& executable_name,
int64 wait_milliseconds,
const ProcessFilter* filter) {
bool result = false;
// TODO(port): This is inefficient, but works if there are multiple procs.
// TODO(port): use waitpid to avoid leaving zombies around
base::Time end_time = base::Time::Now() +
base::TimeDelta::FromMilliseconds(wait_milliseconds);
do {
NamedProcessIterator iter(executable_name, filter);
if (!iter.NextProcessEntry()) {
result = true;
break;
}
PlatformThread::Sleep(100);
} while ((base::Time::Now() - end_time) > base::TimeDelta());
return result;
}
bool CleanupProcesses(const std::wstring& executable_name,
int64 wait_milliseconds,
int exit_code,
const ProcessFilter* filter) {
bool exited_cleanly =
WaitForProcessesToExit(executable_name, wait_milliseconds,
filter);
if (!exited_cleanly)
KillProcesses(executable_name, exit_code, filter);
return exited_cleanly;
}
} // namespace base
|