1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/process_util.h"
#include <errno.h>
#include <signal.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <limits>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/sys_info.h"
#include "base/time.h"
const int kMicrosecondsPerSecond = 1000000;
namespace base {
int GetCurrentProcId() {
return getpid();
}
ProcessHandle GetCurrentProcessHandle() {
return GetCurrentProcId();
}
int GetProcId(ProcessHandle process) {
return process;
}
// Attempts to kill the process identified by the given process
// entry structure. Ignores specified exit_code; posix can't force that.
// Returns true if this is successful, false otherwise.
bool KillProcess(int process_id, int exit_code, bool wait) {
bool result = false;
int status = kill(process_id, SIGTERM);
if (!status && wait) {
int tries = 60;
// The process may not end immediately due to pending I/O
while (tries-- > 0) {
int pid = waitpid(process_id, &status, WNOHANG);
if (pid == process_id) {
result = true;
break;
}
sleep(1);
}
}
if (!result)
DLOG(ERROR) << "Unable to terminate process.";
return result;
}
int GetMaxFilesOpenInProcess() {
struct rlimit rlimit;
if (getrlimit(RLIMIT_NOFILE, &rlimit) != 0) {
return 0;
}
// rlim_t is a uint64 - clip to maxint.
// We do this since we use the value of this function to close FD #s in a loop
// if we didn't clamp the value, doing this would be too time consuming.
rlim_t max_int = static_cast<rlim_t>(std::numeric_limits<int32>::max());
if (rlimit.rlim_cur > max_int) {
return max_int;
}
return rlimit.rlim_cur;
}
ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process),
last_time_(0),
last_system_time_(0) {
processor_count_ = base::SysInfo::NumberOfProcessors();
}
// static
ProcessMetrics* ProcessMetrics::CreateProcessMetrics(ProcessHandle process) {
return new ProcessMetrics(process);
}
ProcessMetrics::~ProcessMetrics() { }
void EnableTerminationOnHeapCorruption() {
// On POSIX, there nothing to do AFAIK.
}
void RaiseProcessToHighPriority() {
// On POSIX, we don't actually do anything here. We could try to nice() or
// setpriority() or sched_getscheduler, but these all require extra rights.
}
bool WaitForExitCode(ProcessHandle handle, int* exit_code) {
int status;
while (waitpid(handle, &status, 0) == -1) {
if (errno != EINTR) {
NOTREACHED();
return false;
}
}
if (WIFEXITED(status)) {
*exit_code = WEXITSTATUS(status);
return true;
}
// If it didn't exit cleanly, it must have been signaled.
DCHECK(WIFSIGNALED(status));
return false;
}
bool WaitForSingleProcess(ProcessHandle handle, int wait_milliseconds) {
// This POSIX version of this function only guarantees that we wait no less
// than |wait_milliseconds| for the proces to exit. The child process may
// exit sometime before the timeout has ended but we may still block for
// up to 0.25 seconds after the fact.
//
// waitpid() has no direct support on POSIX for specifying a timeout, you can
// either ask it to block indefinitely or return immediately (WNOHANG).
// When a child process terminates a SIGCHLD signal is sent to the parent.
// Catching this signal would involve installing a signal handler which may
// affect other parts of the application and would be difficult to debug.
//
// Our strategy is to call waitpid() once up front to check if the process
// has already exited, otherwise to loop for wait_milliseconds, sleeping for
// at most 0.25 secs each time using usleep() and then calling waitpid().
//
// usleep() is speced to exit if a signal is received for which a handler
// has been installed. This means that when a SIGCHLD is sent, it will exit
// depending on behavior external to this function.
//
// This function is used primarilly for unit tests, if we want to use it in
// the application itself it would probably be best to examine other routes.
int status = -1;
pid_t ret_pid = waitpid(handle, &status, WNOHANG);
static const int64 kQuarterSecondInMicroseconds = kMicrosecondsPerSecond/4;
// If the process hasn't exited yet, then sleep and try again.
Time wakeup_time = Time::Now() + TimeDelta::FromMilliseconds(
wait_milliseconds);
while (ret_pid == 0) {
Time now = Time::Now();
if (now > wakeup_time)
break;
// Guaranteed to be non-negative!
int64 sleep_time_usecs = (wakeup_time - now).InMicroseconds();
// Don't sleep for more than 0.25 secs at a time.
if (sleep_time_usecs > kQuarterSecondInMicroseconds) {
sleep_time_usecs = kQuarterSecondInMicroseconds;
}
// usleep() will return 0 and set errno to EINTR on receipt of a signal
// such as SIGCHLD.
usleep(sleep_time_usecs);
ret_pid = waitpid(handle, &status, WNOHANG);
}
if (status != -1) {
return WIFEXITED(status);
} else {
return false;
}
}
namespace {
int64 TimeValToMicroseconds(const struct timeval& tv) {
return tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec;
}
}
int ProcessMetrics::GetCPUUsage() {
struct timeval now;
struct rusage usage;
int retval = gettimeofday(&now, NULL);
if (retval)
return 0;
retval = getrusage(RUSAGE_SELF, &usage);
if (retval)
return 0;
int64 system_time = (TimeValToMicroseconds(usage.ru_stime) +
TimeValToMicroseconds(usage.ru_utime)) /
processor_count_;
int64 time = TimeValToMicroseconds(now);
if ((last_system_time_ == 0) || (last_time_ == 0)) {
// First call, just set the last values.
last_system_time_ = system_time;
last_time_ = time;
return 0;
}
int64 system_time_delta = system_time - last_system_time_;
int64 time_delta = time - last_time_;
DCHECK(time_delta != 0);
if (time_delta == 0)
return 0;
// We add time_delta / 2 so the result is rounded.
int cpu = static_cast<int>((system_time_delta * 100 + time_delta / 2) /
time_delta);
last_system_time_ = system_time;
last_time_ = time;
return cpu;
}
} // namespace base
|