1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#define _CRT_SECURE_NO_WARNINGS
#include "base/command_line.h"
#include "base/eintr_wrapper.h"
#include "base/file_path.h"
#include "base/multiprocess_test.h"
#include "base/path_service.h"
#include "base/platform_thread.h"
#include "base/process_util.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_LINUX)
#include <dlfcn.h>
#endif
#if defined(OS_POSIX)
#include <fcntl.h>
#include <sys/socket.h>
#endif
#if defined(OS_WIN)
#include <windows.h>
#endif
namespace base {
class ProcessUtilTest : public MultiProcessTest {
};
MULTIPROCESS_TEST_MAIN(SimpleChildProcess) {
return 0;
}
TEST_F(ProcessUtilTest, SpawnChild) {
ProcessHandle handle = this->SpawnChild(L"SimpleChildProcess");
ASSERT_NE(static_cast<ProcessHandle>(NULL), handle);
EXPECT_TRUE(WaitForSingleProcess(handle, 5000));
base::CloseProcessHandle(handle);
}
MULTIPROCESS_TEST_MAIN(SlowChildProcess) {
// Sleep until file "SlowChildProcess.die" is created.
FILE *fp;
do {
PlatformThread::Sleep(100);
fp = fopen("SlowChildProcess.die", "r");
} while (!fp);
fclose(fp);
remove("SlowChildProcess.die");
exit(0);
return 0;
}
TEST_F(ProcessUtilTest, KillSlowChild) {
remove("SlowChildProcess.die");
ProcessHandle handle = this->SpawnChild(L"SlowChildProcess");
ASSERT_NE(static_cast<ProcessHandle>(NULL), handle);
FILE *fp = fopen("SlowChildProcess.die", "w");
fclose(fp);
EXPECT_TRUE(base::WaitForSingleProcess(handle, 5000));
base::CloseProcessHandle(handle);
}
// TODO(estade): if possible, port these 2 tests.
#if defined(OS_WIN)
TEST_F(ProcessUtilTest, EnableLFH) {
ASSERT_TRUE(EnableLowFragmentationHeap());
if (IsDebuggerPresent()) {
// Under these conditions, LFH can't be enabled. There's no point to test
// anything.
const char* no_debug_env = getenv("_NO_DEBUG_HEAP");
if (!no_debug_env || strcmp(no_debug_env, "1"))
return;
}
HANDLE heaps[1024] = { 0 };
unsigned number_heaps = GetProcessHeaps(1024, heaps);
EXPECT_GT(number_heaps, 0u);
for (unsigned i = 0; i < number_heaps; ++i) {
ULONG flag = 0;
SIZE_T length;
ASSERT_NE(0, HeapQueryInformation(heaps[i],
HeapCompatibilityInformation,
&flag,
sizeof(flag),
&length));
// If flag is 0, the heap is a standard heap that does not support
// look-asides. If flag is 1, the heap supports look-asides. If flag is 2,
// the heap is a low-fragmentation heap (LFH). Note that look-asides are not
// supported on the LFH.
// We don't have any documented way of querying the HEAP_NO_SERIALIZE flag.
EXPECT_LE(flag, 2u);
EXPECT_NE(flag, 1u);
}
}
TEST_F(ProcessUtilTest, CalcFreeMemory) {
ProcessMetrics* metrics =
ProcessMetrics::CreateProcessMetrics(::GetCurrentProcess());
ASSERT_TRUE(NULL != metrics);
// Typical values here is ~1900 for total and ~1000 for largest. Obviously
// it depends in what other tests have done to this process.
FreeMBytes free_mem1 = {0};
EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem1));
EXPECT_LT(10u, free_mem1.total);
EXPECT_LT(10u, free_mem1.largest);
EXPECT_GT(2048u, free_mem1.total);
EXPECT_GT(2048u, free_mem1.largest);
EXPECT_GE(free_mem1.total, free_mem1.largest);
EXPECT_TRUE(NULL != free_mem1.largest_ptr);
// Allocate 20M and check again. It should have gone down.
const int kAllocMB = 20;
char* alloc = new char[kAllocMB * 1024 * 1024];
EXPECT_TRUE(NULL != alloc);
size_t expected_total = free_mem1.total - kAllocMB;
size_t expected_largest = free_mem1.largest;
FreeMBytes free_mem2 = {0};
EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem2));
EXPECT_GE(free_mem2.total, free_mem2.largest);
EXPECT_GE(expected_total, free_mem2.total);
EXPECT_GE(expected_largest, free_mem2.largest);
EXPECT_TRUE(NULL != free_mem2.largest_ptr);
delete[] alloc;
delete metrics;
}
TEST_F(ProcessUtilTest, GetAppOutput) {
// Let's create a decently long message.
std::string message;
for (int i = 0; i < 1025; i++) { // 1025 so it does not end on a kilo-byte
// boundary.
message += "Hello!";
}
FilePath python_runtime;
ASSERT_TRUE(PathService::Get(base::DIR_SOURCE_ROOT, &python_runtime));
python_runtime = python_runtime.Append(FILE_PATH_LITERAL("third_party"))
.Append(FILE_PATH_LITERAL("python_24"))
.Append(FILE_PATH_LITERAL("python.exe"));
CommandLine cmd_line(python_runtime.value());
cmd_line.AppendLooseValue(L"-c");
cmd_line.AppendLooseValue(L"\"import sys; sys.stdout.write('" +
ASCIIToWide(message) + L"');\"");
std::string output;
ASSERT_TRUE(base::GetAppOutput(cmd_line, &output));
EXPECT_EQ(message, output);
// Let's make sure stderr is ignored.
CommandLine other_cmd_line(python_runtime.value());
other_cmd_line.AppendLooseValue(L"-c");
other_cmd_line.AppendLooseValue(
L"\"import sys; sys.stderr.write('Hello!');\"");
output.clear();
ASSERT_TRUE(base::GetAppOutput(other_cmd_line, &output));
EXPECT_EQ("", output);
}
#endif // defined(OS_WIN)
#if defined(OS_POSIX)
// Returns the maximum number of files that a process can have open.
// Returns 0 on error.
int GetMaxFilesOpenInProcess() {
struct rlimit rlim;
if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) {
return 0;
}
// rlim_t is a uint64 - clip to maxint. We do this since FD #s are ints
// which are all 32 bits on the supported platforms.
rlim_t max_int = static_cast<rlim_t>(std::numeric_limits<int32>::max());
if (rlim.rlim_cur > max_int) {
return max_int;
}
return rlim.rlim_cur;
}
const int kChildPipe = 20; // FD # for write end of pipe in child process.
MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) {
// This child process counts the number of open FDs, it then writes that
// number out to a pipe connected to the parent.
int num_open_files = 0;
int write_pipe = kChildPipe;
int max_files = GetMaxFilesOpenInProcess();
for (int i = STDERR_FILENO + 1; i < max_files; i++) {
if (i != kChildPipe) {
if (HANDLE_EINTR(close(i)) != -1) {
LOG(WARNING) << "Leaked FD " << i;
num_open_files += 1;
}
}
}
// InitLogging always opens a file at startup.
int expected_num_open_fds = 1;
#if defined(OS_LINUX)
// On Linux, '/etc/localtime' is opened before the test's main() enters.
expected_num_open_fds += 1;
#endif // defined(OS_LINUX)
num_open_files -= expected_num_open_fds;
int written = HANDLE_EINTR(write(write_pipe, &num_open_files,
sizeof(num_open_files)));
DCHECK_EQ(static_cast<size_t>(written), sizeof(num_open_files));
HANDLE_EINTR(close(write_pipe));
return 0;
}
TEST_F(ProcessUtilTest, FDRemapping) {
// Open some files to check they don't get leaked to the child process.
int fds[2];
if (pipe(fds) < 0)
NOTREACHED();
int pipe_read_fd = fds[0];
int pipe_write_fd = fds[1];
// open some dummy fds to make sure they don't propogate over to the
// child process.
int dev_null = open("/dev/null", O_RDONLY);
int sockets[2];
socketpair(AF_UNIX, SOCK_STREAM, 0, sockets);
file_handle_mapping_vector fd_mapping_vec;
fd_mapping_vec.push_back(std::pair<int,int>(pipe_write_fd, kChildPipe));
ProcessHandle handle = this->SpawnChild(L"ProcessUtilsLeakFDChildProcess",
fd_mapping_vec,
false);
ASSERT_NE(static_cast<ProcessHandle>(NULL), handle);
HANDLE_EINTR(close(pipe_write_fd));
// Read number of open files in client process from pipe;
int num_open_files = -1;
ssize_t bytes_read =
HANDLE_EINTR(read(pipe_read_fd, &num_open_files, sizeof(num_open_files)));
ASSERT_EQ(bytes_read, static_cast<ssize_t>(sizeof(num_open_files)));
// Make sure 0 fds are leaked to the client.
ASSERT_EQ(0, num_open_files);
EXPECT_TRUE(WaitForSingleProcess(handle, 1000));
base::CloseProcessHandle(handle);
HANDLE_EINTR(close(fds[0]));
HANDLE_EINTR(close(sockets[0]));
HANDLE_EINTR(close(sockets[1]));
HANDLE_EINTR(close(dev_null));
}
TEST_F(ProcessUtilTest, GetAppOutput) {
std::string output;
EXPECT_TRUE(GetAppOutput(CommandLine(L"true"), &output));
EXPECT_STREQ("", output.c_str());
EXPECT_FALSE(GetAppOutput(CommandLine(L"false"), &output));
std::vector<std::string> argv;
argv.push_back("/bin/echo");
argv.push_back("-n");
argv.push_back("foobar42");
EXPECT_TRUE(GetAppOutput(CommandLine(argv), &output));
EXPECT_STREQ("foobar42", output.c_str());
}
#if defined(OS_LINUX)
TEST_F(ProcessUtilTest, GetParentProcessId) {
base::ProcessId ppid = GetParentProcessId(GetCurrentProcId());
EXPECT_EQ(ppid, getppid());
}
#endif
#endif // defined(OS_POSIX)
} // namespace base
|