summaryrefslogtreecommitdiffstats
path: root/base/process_util_unittest.cc
blob: 3170b6a60c062b92b01030f52ec53e881c670b43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#define _CRT_SECURE_NO_WARNINGS

#include <limits>

#include "base/command_line.h"
#include "base/eintr_wrapper.h"
#include "base/file_path.h"
#include "base/multiprocess_test.h"
#include "base/path_service.h"
#include "base/platform_thread.h"
#include "base/process_util.h"
#include "testing/gtest/include/gtest/gtest.h"

#if defined(OS_LINUX)
#include <dlfcn.h>
#include <errno.h>
#include <malloc.h>
#include <glib.h>
#endif
#if defined(OS_POSIX)
#include <fcntl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#endif
#if defined(OS_WIN)
#include <windows.h>
#endif

namespace base {

class ProcessUtilTest : public MultiProcessTest {
#if defined(OS_POSIX)
 public:
  // Spawn a child process that counts how many file descriptors are open.
  int CountOpenFDsInChild();
#endif
};

MULTIPROCESS_TEST_MAIN(SimpleChildProcess) {
  return 0;
}

TEST_F(ProcessUtilTest, SpawnChild) {
  ProcessHandle handle = this->SpawnChild(L"SimpleChildProcess");

  ASSERT_NE(base::kNullProcessHandle, handle);
  EXPECT_TRUE(WaitForSingleProcess(handle, 5000));
  base::CloseProcessHandle(handle);
}

MULTIPROCESS_TEST_MAIN(SlowChildProcess) {
  // Sleep until file "SlowChildProcess.die" is created.
  FILE *fp;
  do {
    PlatformThread::Sleep(100);
    fp = fopen("SlowChildProcess.die", "r");
  } while (!fp);
  fclose(fp);
  remove("SlowChildProcess.die");
  exit(0);
  return 0;
}

TEST_F(ProcessUtilTest, KillSlowChild) {
  remove("SlowChildProcess.die");
  ProcessHandle handle = this->SpawnChild(L"SlowChildProcess");
  ASSERT_NE(base::kNullProcessHandle, handle);
  FILE *fp = fopen("SlowChildProcess.die", "w");
  fclose(fp);
  EXPECT_TRUE(base::WaitForSingleProcess(handle, 5000));
  base::CloseProcessHandle(handle);
}

// Ensure that the priority of a process is restored correctly after
// backgrounding and restoring.
// Note: a platform may not be willing or able to lower the priority of
// a process. The calls to SetProcessBackground should be noops then.
TEST_F(ProcessUtilTest, SetProcessBackgrounded) {
  ProcessHandle handle = this->SpawnChild(L"SimpleChildProcess");
  Process process(handle);
  int old_priority = process.GetPriority();
  process.SetProcessBackgrounded(true);
  process.SetProcessBackgrounded(false);
  int new_priority = process.GetPriority();
  EXPECT_EQ(old_priority, new_priority);
}

// TODO(estade): if possible, port these 2 tests.
#if defined(OS_WIN)
TEST_F(ProcessUtilTest, EnableLFH) {
  ASSERT_TRUE(EnableLowFragmentationHeap());
  if (IsDebuggerPresent()) {
    // Under these conditions, LFH can't be enabled. There's no point to test
    // anything.
    const char* no_debug_env = getenv("_NO_DEBUG_HEAP");
    if (!no_debug_env || strcmp(no_debug_env, "1"))
      return;
  }
  HANDLE heaps[1024] = { 0 };
  unsigned number_heaps = GetProcessHeaps(1024, heaps);
  EXPECT_GT(number_heaps, 0u);
  for (unsigned i = 0; i < number_heaps; ++i) {
    ULONG flag = 0;
    SIZE_T length;
    ASSERT_NE(0, HeapQueryInformation(heaps[i],
                                      HeapCompatibilityInformation,
                                      &flag,
                                      sizeof(flag),
                                      &length));
    // If flag is 0, the heap is a standard heap that does not support
    // look-asides. If flag is 1, the heap supports look-asides. If flag is 2,
    // the heap is a low-fragmentation heap (LFH). Note that look-asides are not
    // supported on the LFH.

    // We don't have any documented way of querying the HEAP_NO_SERIALIZE flag.
    EXPECT_LE(flag, 2u);
    EXPECT_NE(flag, 1u);
  }
}

TEST_F(ProcessUtilTest, CalcFreeMemory) {
  ProcessMetrics* metrics =
      ProcessMetrics::CreateProcessMetrics(::GetCurrentProcess());
  ASSERT_TRUE(NULL != metrics);

  // Typical values here is ~1900 for total and ~1000 for largest. Obviously
  // it depends in what other tests have done to this process.
  FreeMBytes free_mem1 = {0};
  EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem1));
  EXPECT_LT(10u, free_mem1.total);
  EXPECT_LT(10u, free_mem1.largest);
  EXPECT_GT(2048u, free_mem1.total);
  EXPECT_GT(2048u, free_mem1.largest);
  EXPECT_GE(free_mem1.total, free_mem1.largest);
  EXPECT_TRUE(NULL != free_mem1.largest_ptr);

  // Allocate 20M and check again. It should have gone down.
  const int kAllocMB = 20;
  char* alloc = new char[kAllocMB * 1024 * 1024];
  EXPECT_TRUE(NULL != alloc);

  size_t expected_total = free_mem1.total - kAllocMB;
  size_t expected_largest = free_mem1.largest;

  FreeMBytes free_mem2 = {0};
  EXPECT_TRUE(metrics->CalculateFreeMemory(&free_mem2));
  EXPECT_GE(free_mem2.total, free_mem2.largest);
  EXPECT_GE(expected_total, free_mem2.total);
  EXPECT_GE(expected_largest, free_mem2.largest);
  EXPECT_TRUE(NULL != free_mem2.largest_ptr);

  delete[] alloc;
  delete metrics;
}

TEST_F(ProcessUtilTest, GetAppOutput) {
  // Let's create a decently long message.
  std::string message;
  for (int i = 0; i < 1025; i++) {  // 1025 so it does not end on a kilo-byte
                                    // boundary.
    message += "Hello!";
  }

  FilePath python_runtime;
  ASSERT_TRUE(PathService::Get(base::DIR_SOURCE_ROOT, &python_runtime));
  python_runtime = python_runtime.Append(FILE_PATH_LITERAL("third_party"))
                                 .Append(FILE_PATH_LITERAL("python_24"))
                                 .Append(FILE_PATH_LITERAL("python.exe"));

  CommandLine cmd_line(python_runtime);
  cmd_line.AppendLooseValue(L"-c");
  cmd_line.AppendLooseValue(L"\"import sys; sys.stdout.write('" +
      ASCIIToWide(message) + L"');\"");
  std::string output;
  ASSERT_TRUE(base::GetAppOutput(cmd_line, &output));
  EXPECT_EQ(message, output);

  // Let's make sure stderr is ignored.
  CommandLine other_cmd_line(python_runtime);
  other_cmd_line.AppendLooseValue(L"-c");
  other_cmd_line.AppendLooseValue(
      L"\"import sys; sys.stderr.write('Hello!');\"");
  output.clear();
  ASSERT_TRUE(base::GetAppOutput(other_cmd_line, &output));
  EXPECT_EQ("", output);
}

TEST_F(ProcessUtilTest, LaunchAsUser) {
  base::UserTokenHandle token;
  ASSERT_TRUE(OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &token));
  std::wstring cmdline =
      this->MakeCmdLine(L"SimpleChildProcess", false).command_line_string();
  EXPECT_TRUE(base::LaunchAppAsUser(token, cmdline, false, NULL));
}

#endif  // defined(OS_WIN)

#if defined(OS_POSIX)
// Returns the maximum number of files that a process can have open.
// Returns 0 on error.
int GetMaxFilesOpenInProcess() {
  struct rlimit rlim;
  if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) {
    return 0;
  }

  // rlim_t is a uint64 - clip to maxint. We do this since FD #s are ints
  // which are all 32 bits on the supported platforms.
  rlim_t max_int = static_cast<rlim_t>(std::numeric_limits<int32>::max());
  if (rlim.rlim_cur > max_int) {
    return max_int;
  }

  return rlim.rlim_cur;
}

const int kChildPipe = 20;  // FD # for write end of pipe in child process.
MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) {
  // This child process counts the number of open FDs, it then writes that
  // number out to a pipe connected to the parent.
  int num_open_files = 0;
  int write_pipe = kChildPipe;
  int max_files = GetMaxFilesOpenInProcess();
  for (int i = STDERR_FILENO + 1; i < max_files; i++) {
    if (i != kChildPipe) {
      int fd;
      if ((fd = HANDLE_EINTR(dup(i))) != -1) {
        close(fd);
        num_open_files += 1;
      }
    }
  }

  int written = HANDLE_EINTR(write(write_pipe, &num_open_files,
                                   sizeof(num_open_files)));
  DCHECK_EQ(static_cast<size_t>(written), sizeof(num_open_files));
  int ret = HANDLE_EINTR(close(write_pipe));
  DPCHECK(ret == 0);

  return 0;
}

int ProcessUtilTest::CountOpenFDsInChild() {
  int fds[2];
  if (pipe(fds) < 0)
    NOTREACHED();

  file_handle_mapping_vector fd_mapping_vec;
  fd_mapping_vec.push_back(std::pair<int, int>(fds[1], kChildPipe));
  ProcessHandle handle = this->SpawnChild(L"ProcessUtilsLeakFDChildProcess",
                                          fd_mapping_vec,
                                          false);
  CHECK(handle);
  int ret = HANDLE_EINTR(close(fds[1]));
  DPCHECK(ret == 0);

  // Read number of open files in client process from pipe;
  int num_open_files = -1;
  ssize_t bytes_read =
      HANDLE_EINTR(read(fds[0], &num_open_files, sizeof(num_open_files)));
  CHECK_EQ(bytes_read, static_cast<ssize_t>(sizeof(num_open_files)));

  CHECK(WaitForSingleProcess(handle, 1000));
  base::CloseProcessHandle(handle);
  ret = HANDLE_EINTR(close(fds[0]));
  DPCHECK(ret == 0);

  return num_open_files;
}

TEST_F(ProcessUtilTest, FDRemapping) {
  int fds_before = CountOpenFDsInChild();

  // open some dummy fds to make sure they don't propogate over to the
  // child process.
  int dev_null = open("/dev/null", O_RDONLY);
  int sockets[2];
  socketpair(AF_UNIX, SOCK_STREAM, 0, sockets);

  int fds_after = CountOpenFDsInChild();

  ASSERT_EQ(fds_after, fds_before);

  int ret;
  ret = HANDLE_EINTR(close(sockets[0]));
  DPCHECK(ret == 0);
  ret = HANDLE_EINTR(close(sockets[1]));
  DPCHECK(ret == 0);
  ret = HANDLE_EINTR(close(dev_null));
  DPCHECK(ret == 0);
}

TEST_F(ProcessUtilTest, GetAppOutput) {
  std::string output;
  EXPECT_TRUE(GetAppOutput(CommandLine(FilePath("true")), &output));
  EXPECT_STREQ("", output.c_str());

  EXPECT_FALSE(GetAppOutput(CommandLine(FilePath("false")), &output));

  std::vector<std::string> argv;
  argv.push_back("/bin/echo");
  argv.push_back("-n");
  argv.push_back("foobar42");
  EXPECT_TRUE(GetAppOutput(CommandLine(argv), &output));
  EXPECT_STREQ("foobar42", output.c_str());
}

TEST_F(ProcessUtilTest, GetAppOutputRestricted) {
  // Unfortunately, since we can't rely on the path, we need to know where
  // everything is. So let's use /bin/sh, which is on every POSIX system, and
  // its built-ins.
  std::vector<std::string> argv;
  argv.push_back("/bin/sh");  // argv[0]
  argv.push_back("-c");       // argv[1]

  // On success, should set |output|. We use |/bin/sh -c 'exit 0'| instead of
  // |true| since the location of the latter may be |/bin| or |/usr/bin| (and we
  // need absolute paths).
  argv.push_back("exit 0");   // argv[2]; equivalent to "true"
  std::string output = "abc";
  EXPECT_TRUE(GetAppOutputRestricted(CommandLine(argv), &output, 100));
  EXPECT_STREQ("", output.c_str());

  // On failure, should not touch |output|. As above, but for |false|.
  argv[2] = "exit 1";  // equivalent to "false"
  output = "abc";
  EXPECT_FALSE(GetAppOutputRestricted(CommandLine(argv),
                                      &output, 100));
  EXPECT_STREQ("abc", output.c_str());

  // Amount of output exactly equal to space allowed.
  argv[2] = "echo 123456789";  // (the sh built-in doesn't take "-n")
  output.clear();
  EXPECT_TRUE(GetAppOutputRestricted(CommandLine(argv), &output, 10));
  EXPECT_STREQ("123456789\n", output.c_str());

  // Amount of output greater than space allowed.
  output.clear();
  EXPECT_TRUE(GetAppOutputRestricted(CommandLine(argv), &output, 5));
  EXPECT_STREQ("12345", output.c_str());

  // Amount of output less than space allowed.
  output.clear();
  EXPECT_TRUE(GetAppOutputRestricted(CommandLine(argv), &output, 15));
  EXPECT_STREQ("123456789\n", output.c_str());

  // Zero space allowed.
  output = "abc";
  EXPECT_TRUE(GetAppOutputRestricted(CommandLine(argv), &output, 0));
  EXPECT_STREQ("", output.c_str());
}

TEST_F(ProcessUtilTest, GetAppOutputRestrictedNoZombies) {
  std::vector<std::string> argv;
  argv.push_back("/bin/sh");  // argv[0]
  argv.push_back("-c");       // argv[1]
  argv.push_back("echo 123456789012345678901234567890");  // argv[2]

  // Run |GetAppOutputRestricted()| 300 (> default per-user processes on Mac OS
  // 10.5) times with an output buffer big enough to capture all output.
  for (int i = 0; i < 300; i++) {
    std::string output;
    EXPECT_TRUE(GetAppOutputRestricted(CommandLine(argv), &output, 100));
    EXPECT_STREQ("123456789012345678901234567890\n", output.c_str());
  }

  // Ditto, but with an output buffer too small to capture all output.
  for (int i = 0; i < 300; i++) {
    std::string output;
    EXPECT_TRUE(GetAppOutputRestricted(CommandLine(argv), &output, 10));
    EXPECT_STREQ("1234567890", output.c_str());
  }
}

#if defined(OS_LINUX)
TEST_F(ProcessUtilTest, GetParentProcessId) {
  base::ProcessId ppid = GetParentProcessId(GetCurrentProcId());
  EXPECT_EQ(ppid, getppid());
}

TEST_F(ProcessUtilTest, ParseProcStatCPU) {
  // /proc/self/stat for a process running "top".
  const char kTopStat[] = "960 (top) S 16230 960 16230 34818 960 "
      "4202496 471 0 0 0 "
      "12 16 0 0 "  // <- These are the goods.
      "20 0 1 0 121946157 15077376 314 18446744073709551615 4194304 "
      "4246868 140733983044336 18446744073709551615 140244213071219 "
      "0 0 0 138047495 0 0 0 17 1 0 0 0 0 0";
  EXPECT_EQ(12 + 16, ParseProcStatCPU(kTopStat));

  // cat /proc/self/stat on a random other machine I have.
  const char kSelfStat[] = "5364 (cat) R 5354 5364 5354 34819 5364 "
      "0 142 0 0 0 "
      "0 0 0 0 "  // <- No CPU, apparently.
      "16 0 1 0 1676099790 2957312 114 4294967295 134512640 134528148 "
      "3221224832 3221224344 3086339742 0 0 0 0 0 0 0 17 0 0 0";

  EXPECT_EQ(0, ParseProcStatCPU(kSelfStat));
}
#endif

#endif  // defined(OS_POSIX)

// TODO(vandebo) make this work on Windows and Mac too.
#if defined(OS_LINUX)

#if defined(USE_TCMALLOC)
extern "C" {
int tc_set_new_mode(int mode);
}
#endif  // defined(USE_TCMALLOC)

class OutOfMemoryTest : public testing::Test {
 public:
  OutOfMemoryTest()
      : value_(NULL),
        // Make test size as large as possible minus a few pages so
        // that alignment or other rounding doesn't make it wrap.
        test_size_(std::numeric_limits<std::size_t>::max() - 8192) {
  }

  virtual void SetUp() {
    // Must call EnableTerminationOnOutOfMemory() because that is called from
    // chrome's main function and therefore hasn't been called yet.
    EnableTerminationOnOutOfMemory();
#if defined(USE_TCMALLOC)
    tc_set_new_mode(1);
  }

  virtual void TearDown() {
    tc_set_new_mode(0);
#endif  // defined(USE_TCMALLOC)
  }

  void* value_;
  size_t test_size_;
};

TEST_F(OutOfMemoryTest, New) {
  ASSERT_DEATH(value_ = new char[test_size_], "");
}

TEST_F(OutOfMemoryTest, Malloc) {
  ASSERT_DEATH(value_ = malloc(test_size_), "");
}

TEST_F(OutOfMemoryTest, Realloc) {
  ASSERT_DEATH(value_ = realloc(NULL, test_size_), "");
}

TEST_F(OutOfMemoryTest, Calloc) {
  ASSERT_DEATH(value_ = calloc(1024, test_size_ / 1024L), "");
}

TEST_F(OutOfMemoryTest, Valloc) {
  ASSERT_DEATH(value_ = valloc(test_size_), "");
}

TEST_F(OutOfMemoryTest, Pvalloc) {
  ASSERT_DEATH(value_ = pvalloc(test_size_), "");
}

TEST_F(OutOfMemoryTest, Memalign) {
  ASSERT_DEATH(value_ = memalign(4, test_size_), "");
}

TEST_F(OutOfMemoryTest, ViaSharedLibraries) {
  // g_try_malloc is documented to return NULL on failure. (g_malloc is the
  // 'safe' default that crashes if allocation fails). However, since we have
  // hopefully overridden malloc, even g_try_malloc should fail. This tests
  // that the run-time symbol resolution is overriding malloc for shared
  // libraries as well as for our code.
  ASSERT_DEATH(value_ = g_try_malloc(test_size_), "");
}


TEST_F(OutOfMemoryTest, Posix_memalign) {
  // Grab the return value of posix_memalign to silence a compiler warning
  // about unused return values. We don't actually care about the return
  // value, since we're asserting death.
  ASSERT_DEATH(EXPECT_EQ(ENOMEM, posix_memalign(&value_, 8, test_size_)), "");
}

#endif  // defined(OS_LINUX)

}  // namespace base