1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/sha1.h"
#include "base/basictypes.h"
namespace base {
// Implementation of SHA-1. Only handles data in byte-sized blocks,
// which simplifies the code a fair bit.
// This file also contains an HMAC implementation using SHA-1
// Identifier names follow notation in FIPS PUB 180-3, where you'll
// also find a description of the algorithm:
// http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
// Usage example:
//
// SecureHashAlgorithm sha;
// while(there is data to hash)
// sha.Update(moredata, size of data);
// sha.Final();
// memcpy(somewhere, sha.Digest(), 20);
//
// to reuse the instance of sha, call sha.Init();
// TODO(jhawkins): Replace this implementation with a per-platform
// implementation using each platform's crypto library.
class SecureHashAlgorithm {
public:
SecureHashAlgorithm() { Init(); }
static const int kDigestSizeBytes;
void Init();
void Update(const void* data, size_t nbytes);
void Final();
// 20 bytes of message digest.
const unsigned char* Digest() const {
return reinterpret_cast<const unsigned char*>(H);
}
private:
void Pad();
void Process();
uint32 A, B, C, D, E;
uint32 H[5];
union {
uint32 W[80];
uint8 M[64];
};
uint32 cursor;
uint32 l;
};
static inline uint32 f(uint32 t, uint32 B, uint32 C, uint32 D) {
if (t < 20) {
return (B & C) | ((~B) & D);
} else if (t < 40) {
return B ^ C ^ D;
} else if (t < 60) {
return (B & C) | (B & D) | (C & D);
} else {
return B ^ C ^ D;
}
}
static inline uint32 S(uint32 n, uint32 X) {
return (X << n) | (X >> (32-n));
}
static inline uint32 K(uint32 t) {
if (t < 20) {
return 0x5a827999;
} else if (t < 40) {
return 0x6ed9eba1;
} else if (t < 60) {
return 0x8f1bbcdc;
} else {
return 0xca62c1d6;
}
}
static inline void swapends(uint32& t) {
t = ((t & 0xff000000) >> 24) |
((t & 0xff0000) >> 8) |
((t & 0xff00) << 8) |
((t & 0xff) << 24);
}
const int SecureHashAlgorithm::kDigestSizeBytes = 20;
void SecureHashAlgorithm::Init() {
cursor = 0;
l = 0;
H[0] = 0x67452301;
H[1] = 0xefcdab89;
H[2] = 0x98badcfe;
H[3] = 0x10325476;
H[4] = 0xc3d2e1f0;
}
void SecureHashAlgorithm::Final() {
Pad();
Process();
for (int t = 0; t < 5; ++t)
swapends(H[t]);
}
void SecureHashAlgorithm::Update(const void* data, size_t nbytes) {
const uint8* d = reinterpret_cast<const uint8*>(data);
while (nbytes--) {
M[cursor++] = *d++;
if (cursor >= 64)
Process();
l += 8;
}
}
void SecureHashAlgorithm::Pad() {
M[cursor++] = 0x80;
if (cursor > 64-8) {
// pad out to next block
while (cursor < 64)
M[cursor++] = 0;
Process();
}
while (cursor < 64-4)
M[cursor++] = 0;
M[64-4] = (l & 0xff000000) >> 24;
M[64-3] = (l & 0xff0000) >> 16;
M[64-2] = (l & 0xff00) >> 8;
M[64-1] = (l & 0xff);
}
void SecureHashAlgorithm::Process() {
uint32 t;
// Each a...e corresponds to a section in the FIPS 180-3 algorithm.
// a.
//
// W and M are in a union, so no need to memcpy.
// memcpy(W, M, sizeof(M));
for (t = 0; t < 16; ++t)
swapends(W[t]);
// b.
for (t = 16; t < 80; ++t)
W[t] = S(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
// c.
A = H[0];
B = H[1];
C = H[2];
D = H[3];
E = H[4];
// d.
for (t = 0; t < 80; ++t) {
uint32 TEMP = S(5, A) + f(t, B, C, D) + E + W[t] + K(t);
E = D;
D = C;
C = S(30, B);
B = A;
A = TEMP;
}
// e.
H[0] += A;
H[1] += B;
H[2] += C;
H[3] += D;
H[4] += E;
cursor = 0;
}
std::string SHA1HashString(const std::string& str) {
SecureHashAlgorithm sha;
sha.Update(str.c_str(), str.length());
sha.Final();
std::string out(reinterpret_cast<const char*>(sha.Digest()),
SecureHashAlgorithm::kDigestSizeBytes);
return out;
}
} // namespace base
|