1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <process.h> // _beginthreadex
#include "base/shared_memory.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
class SharedMemoryTest : public testing::Test {
};
unsigned __stdcall MultipleThreadMain(void* param) {
// Each thread will open the shared memory. Each thread will take
// a different 4 byte int pointer, and keep changing it, with some
// small pauses in between. Verify that each thread's value in the
// shared memory is always correct.
const int kDataSize = 1024;
std::wstring test_name = L"SharedMemoryOpenThreadTest";
int16 id = reinterpret_cast<int16>(param);
SharedMemory memory;
bool rv = memory.Create(test_name, false, true, kDataSize);
EXPECT_TRUE(rv);
rv = memory.Map(kDataSize);
EXPECT_TRUE(rv);
int *ptr = static_cast<int*>(memory.memory()) + id;
EXPECT_EQ(*ptr, 0);
for (int idx = 0; idx < 100; idx++) {
*ptr = idx;
Sleep(1); // short wait
EXPECT_EQ(*ptr, idx);
}
memory.Close();
return 0;
}
unsigned __stdcall MultipleLockThread(void* param) {
// Each thread will open the shared memory. Each thread will take
// the memory, and keep changing it while trying to lock it, with some
// small pauses in between. Verify that each thread's value in the
// shared memory is always correct.
const int kDataSize = sizeof(int);
int id = static_cast<int>(reinterpret_cast<INT_PTR>(param));
SharedMemoryHandle handle = NULL;
{
SharedMemory memory1;
EXPECT_TRUE(memory1.Create(L"SharedMemoryMultipleLockThreadTest", false, true,
kDataSize));
EXPECT_TRUE(memory1.ShareToProcess(GetCurrentProcess(), &handle));
}
SharedMemory memory2(handle, false);
EXPECT_TRUE(memory2.Map(kDataSize));
volatile int* const ptr = static_cast<int*>(memory2.memory());
for (int idx = 0; idx < 20; idx++) {
memory2.Lock();
int i = (id << 16) + idx;
*ptr = i;
// short wait
Sleep(1);
EXPECT_EQ(*ptr, i);
memory2.Unlock();
}
memory2.Close();
return 0;
}
} // namespace
TEST(SharedMemoryTest, OpenClose) {
const int kDataSize = 1024;
std::wstring test_name = L"SharedMemoryOpenCloseTest";
// Open two handles to a memory segment, confirm that they
// are mapped separately yet point to the same space.
SharedMemory memory1;
bool rv = memory1.Open(test_name, false);
EXPECT_FALSE(rv);
rv = memory1.Create(test_name, false, false, kDataSize);
EXPECT_TRUE(rv);
rv = memory1.Map(kDataSize);
EXPECT_TRUE(rv);
SharedMemory memory2;
rv = memory2.Open(test_name, false);
EXPECT_TRUE(rv);
rv = memory2.Map(kDataSize);
EXPECT_TRUE(rv);
EXPECT_NE(memory1.memory(), memory2.memory()); // compare the pointers
// Write data to the first memory segment, verify contents of second.
memset(memory1.memory(), '1', kDataSize);
EXPECT_EQ(memcmp(memory1.memory(), memory2.memory(), kDataSize), 0);
// Close the first memory segment, and verify the
// second still has the right data.
memory1.Close();
char *start_ptr = static_cast<char *>(memory2.memory());
char *end_ptr = start_ptr + kDataSize;
for (char* ptr = start_ptr; ptr < end_ptr; ptr++)
EXPECT_EQ(*ptr, '1');
// Close the second memory segment
memory2.Close();
}
TEST(SharedMemoryTest, MultipleThreads) {
// Create a set of 5 threads to each open a shared memory segment
// and write to it. Verify that they are always reading/writing
// consistent data.
const int kNumThreads = 5;
HANDLE threads[kNumThreads];
// Spawn the threads.
for (int16 index = 0; index < kNumThreads; index++) {
void *argument = reinterpret_cast<void*>(index);
unsigned thread_id;
threads[index] = reinterpret_cast<HANDLE>(
_beginthreadex(NULL, 0, MultipleThreadMain, argument, 0, &thread_id));
EXPECT_NE(threads[index], static_cast<HANDLE>(NULL));
}
// Wait for the threads to finish.
for (int index = 0; index < kNumThreads; index++) {
DWORD rv = WaitForSingleObject(threads[index], 60*1000);
EXPECT_EQ(rv, WAIT_OBJECT_0); // verify all threads finished
CloseHandle(threads[index]);
}
}
TEST(SharedMemoryTest, Lock) {
// Create a set of threads to each open a shared memory segment and write to
// it with the lock held. Verify that they are always reading/writing
// consistent data.
const int kNumThreads = 5;
HANDLE threads[kNumThreads];
// Spawn the threads.
for (int index = 0; index < kNumThreads; ++index) {
void *argument = reinterpret_cast<void*>(static_cast<INT_PTR>(index));
threads[index] = reinterpret_cast<HANDLE>(
_beginthreadex(NULL, 0, &MultipleLockThread, argument, 0, NULL));
EXPECT_NE(threads[index], static_cast<HANDLE>(NULL));
}
// Wait for the threads to finish.
for (int index = 0; index < kNumThreads; ++index) {
DWORD rv = WaitForSingleObject(threads[index], 60*1000);
EXPECT_EQ(rv, WAIT_OBJECT_0); // verify all threads finished
CloseHandle(threads[index]);
}
}
|