1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/string_number_conversions.h"
#include <errno.h>
#include <stdlib.h>
#include "base/logging.h"
#include "base/third_party/dmg_fp/dmg_fp.h"
#include "base/utf_string_conversions.h"
namespace base {
namespace {
template <typename STR, typename INT, typename UINT, bool NEG>
struct IntToStringT {
// This is to avoid a compiler warning about unary minus on unsigned type.
// For example, say you had the following code:
// template <typename INT>
// INT abs(INT value) { return value < 0 ? -value : value; }
// Even though if INT is unsigned, it's impossible for value < 0, so the
// unary minus will never be taken, the compiler will still generate a
// warning. We do a little specialization dance...
template <typename INT2, typename UINT2, bool NEG2>
struct ToUnsignedT {};
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, false> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value);
}
};
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, true> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value < 0 ? -value : value);
}
};
// This set of templates is very similar to the above templates, but
// for testing whether an integer is negative.
template <typename INT2, bool NEG2>
struct TestNegT {};
template <typename INT2>
struct TestNegT<INT2, false> {
static bool TestNeg(INT2 value) {
// value is unsigned, and can never be negative.
return false;
}
};
template <typename INT2>
struct TestNegT<INT2, true> {
static bool TestNeg(INT2 value) {
return value < 0;
}
};
static STR IntToString(INT value) {
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
// So round up to allocate 3 output characters per byte, plus 1 for '-'.
const int kOutputBufSize = 3 * sizeof(INT) + 1;
// Allocate the whole string right away, we will right back to front, and
// then return the substr of what we ended up using.
STR outbuf(kOutputBufSize, 0);
bool is_neg = TestNegT<INT, NEG>::TestNeg(value);
// Even though is_neg will never be true when INT is parameterized as
// unsigned, even the presence of the unary operation causes a warning.
UINT res = ToUnsignedT<INT, UINT, NEG>::ToUnsigned(value);
for (typename STR::iterator it = outbuf.end();;) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>((res % 10) + '0');
res /= 10;
// We're done..
if (res == 0) {
if (is_neg) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>('-');
}
return STR(it, outbuf.end());
}
}
NOTREACHED();
return STR();
}
};
// Generalized string-to-number conversion.
//
// StringToNumberTraits should provide:
// - a typedef for string_type, the STL string type used as input.
// - a typedef for value_type, the target numeric type.
// - a static function, convert_func, which dispatches to an appropriate
// strtol-like function and returns type value_type.
// - a static function, valid_func, which validates |input| and returns a bool
// indicating whether it is in proper form. This is used to check for
// conditions that convert_func tolerates but should result in
// StringToNumber returning false. For strtol-like funtions, valid_func
// should check for leading whitespace.
template<typename StringToNumberTraits>
bool StringToNumber(const typename StringToNumberTraits::string_type& input,
typename StringToNumberTraits::value_type* output) {
typedef StringToNumberTraits traits;
errno = 0; // Thread-safe? It is on at least Mac, Linux, and Windows.
typename traits::string_type::value_type* endptr = NULL;
typename traits::value_type value = traits::convert_func(input.c_str(),
&endptr);
*output = value;
// Cases to return false:
// - If errno is ERANGE, there was an overflow or underflow.
// - If the input string is empty, there was nothing to parse.
// - If endptr does not point to the end of the string, there are either
// characters remaining in the string after a parsed number, or the string
// does not begin with a parseable number. endptr is compared to the
// expected end given the string's stated length to correctly catch cases
// where the string contains embedded NUL characters.
// - valid_func determines that the input is not in preferred form.
return errno == 0 &&
!input.empty() &&
input.c_str() + input.length() == endptr &&
traits::valid_func(input);
}
static int strtoi(const char *nptr, char **endptr, int base) {
long res = strtol(nptr, endptr, base);
#if __LP64__
// Long is 64-bits, we have to handle under/overflow ourselves.
if (res > kint32max) {
res = kint32max;
errno = ERANGE;
} else if (res < kint32min) {
res = kint32min;
errno = ERANGE;
}
#endif
return static_cast<int>(res);
}
static unsigned int strtoui(const char *nptr, char **endptr, int base) {
unsigned long res = strtoul(nptr, endptr, base);
#if __LP64__
// Long is 64-bits, we have to handle under/overflow ourselves. Test to see
// if the result can fit into 32-bits (as signed or unsigned).
if (static_cast<int>(static_cast<long>(res)) != static_cast<long>(res) &&
static_cast<unsigned int>(res) != res) {
res = kuint32max;
errno = ERANGE;
}
#endif
return static_cast<unsigned int>(res);
}
class StringToIntTraits {
public:
typedef std::string string_type;
typedef int value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtoi(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class String16ToIntTraits {
public:
typedef string16 string_type;
typedef int value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#if defined(WCHAR_T_IS_UTF16)
return wcstol(str, endptr, kBase);
#elif defined(WCHAR_T_IS_UTF32)
std::string ascii_string = UTF16ToUTF8(string16(str));
char* ascii_end = NULL;
value_type ret = strtoi(ascii_string.c_str(), &ascii_end, kBase);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
class StringToInt64Traits {
public:
typedef std::string string_type;
typedef int64 value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _strtoi64(str, endptr, kBase);
#else // assume OS_POSIX
return strtoll(str, endptr, kBase);
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class String16ToInt64Traits {
public:
typedef string16 string_type;
typedef int64 value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _wcstoi64(str, endptr, kBase);
#else // assume OS_POSIX
std::string ascii_string = UTF16ToUTF8(string16(str));
char* ascii_end = NULL;
value_type ret = strtoll(ascii_string.c_str(), &ascii_end, kBase);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
// For the HexString variants, use the unsigned variants like strtoul for
// convert_func so that input like "0x80000000" doesn't result in an overflow.
class HexStringToIntTraits {
public:
typedef std::string string_type;
typedef int value_type;
static const int kBase = 16;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtoui(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class StringToDoubleTraits {
public:
typedef std::string string_type;
typedef double value_type;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return dmg_fp::strtod(str, endptr);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
template<class CHAR>
bool HexDigitToIntT(const CHAR digit, uint8* val) {
if (digit >= '0' && digit <= '9')
*val = digit - '0';
else if (digit >= 'a' && digit <= 'f')
*val = 10 + digit - 'a';
else if (digit >= 'A' && digit <= 'F')
*val = 10 + digit - 'A';
else
return false;
return true;
}
template<typename STR>
bool HexStringToBytesT(const STR& input, std::vector<uint8>* output) {
DCHECK(output->size() == 0);
size_t count = input.size();
if (count == 0 || (count % 2) != 0)
return false;
for (uintptr_t i = 0; i < count / 2; ++i) {
uint8 msb = 0; // most significant 4 bits
uint8 lsb = 0; // least significant 4 bits
if (!HexDigitToIntT(input[i * 2], &msb) ||
!HexDigitToIntT(input[i * 2 + 1], &lsb))
return false;
output->push_back((msb << 4) | lsb);
}
return true;
}
} // namespace
std::string IntToString(int value) {
return IntToStringT<std::string, int, unsigned int, true>::
IntToString(value);
}
string16 IntToString16(int value) {
return IntToStringT<string16, int, unsigned int, true>::
IntToString(value);
}
std::string UintToString(unsigned int value) {
return IntToStringT<std::string, unsigned int, unsigned int, false>::
IntToString(value);
}
string16 UintToString16(unsigned int value) {
return IntToStringT<string16, unsigned int, unsigned int, false>::
IntToString(value);
}
std::string Int64ToString(int64 value) {
return IntToStringT<std::string, int64, uint64, true>::
IntToString(value);
}
string16 Int64ToString16(int64 value) {
return IntToStringT<string16, int64, uint64, true>::IntToString(value);
}
std::string Uint64ToString(uint64 value) {
return IntToStringT<std::string, uint64, uint64, false>::
IntToString(value);
}
string16 Uint64ToString16(uint64 value) {
return IntToStringT<string16, uint64, uint64, false>::
IntToString(value);
}
std::string DoubleToString(double value) {
// According to g_fmt.cc, it is sufficient to declare a buffer of size 32.
char buffer[32];
dmg_fp::g_fmt(buffer, value);
return std::string(buffer);
}
bool StringToInt(const std::string& input, int* output) {
return StringToNumber<StringToIntTraits>(input, output);
}
bool StringToInt(const string16& input, int* output) {
return StringToNumber<String16ToIntTraits>(input, output);
}
bool StringToInt64(const std::string& input, int64* output) {
return StringToNumber<StringToInt64Traits>(input, output);
}
bool StringToInt64(const string16& input, int64* output) {
return StringToNumber<String16ToInt64Traits>(input, output);
}
bool StringToDouble(const std::string& input, double* output) {
return StringToNumber<StringToDoubleTraits>(input, output);
}
// Note: if you need to add String16ToDouble, first ask yourself if it's
// really necessary. If it is, probably the best implementation here is to
// convert to 8-bit and then use the 8-bit version.
std::string HexEncode(const void* bytes, size_t size) {
static const char kHexChars[] = "0123456789ABCDEF";
// Each input byte creates two output hex characters.
std::string ret(size * 2, '\0');
for (size_t i = 0; i < size; ++i) {
char b = reinterpret_cast<const char*>(bytes)[i];
ret[(i * 2)] = kHexChars[(b >> 4) & 0xf];
ret[(i * 2) + 1] = kHexChars[b & 0xf];
}
return ret;
}
bool HexStringToInt(const std::string& input, int* output) {
return StringToNumber<HexStringToIntTraits>(input, output);
}
bool HexStringToBytes(const std::string& input, std::vector<uint8>* output) {
return HexStringToBytesT(input, output);
}
} // namespace base
|