1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/string_util.h"
#include "build/build_config.h"
#include <ctype.h>
#include <errno.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/singleton.h"
#include "base/third_party/dmg_fp/dmg_fp.h"
namespace {
// Force the singleton used by Empty[W]String[16] to be a unique type. This
// prevents other code that might accidentally use Singleton<string> from
// getting our internal one.
struct EmptyStrings {
EmptyStrings() {}
const std::string s;
const std::wstring ws;
const string16 s16;
};
// Hack to convert any char-like type to its unsigned counterpart.
// For example, it will convert char, signed char and unsigned char to unsigned
// char.
template<typename T>
struct ToUnsigned {
typedef T Unsigned;
};
template<>
struct ToUnsigned<char> {
typedef unsigned char Unsigned;
};
template<>
struct ToUnsigned<signed char> {
typedef unsigned char Unsigned;
};
template<>
struct ToUnsigned<wchar_t> {
#if defined(WCHAR_T_IS_UTF16)
typedef unsigned short Unsigned;
#elif defined(WCHAR_T_IS_UTF32)
typedef uint32 Unsigned;
#endif
};
template<>
struct ToUnsigned<short> {
typedef unsigned short Unsigned;
};
// Used by ReplaceStringPlaceholders to track the position in the string of
// replaced parameters.
struct ReplacementOffset {
ReplacementOffset(int parameter, size_t offset)
: parameter(parameter),
offset(offset) {}
// Index of the parameter.
int parameter;
// Starting position in the string.
size_t offset;
};
static bool CompareParameter(const ReplacementOffset& elem1,
const ReplacementOffset& elem2) {
return elem1.parameter < elem2.parameter;
}
// Generalized string-to-number conversion.
//
// StringToNumberTraits should provide:
// - a typedef for string_type, the STL string type used as input.
// - a typedef for value_type, the target numeric type.
// - a static function, convert_func, which dispatches to an appropriate
// strtol-like function and returns type value_type.
// - a static function, valid_func, which validates |input| and returns a bool
// indicating whether it is in proper form. This is used to check for
// conditions that convert_func tolerates but should result in
// StringToNumber returning false. For strtol-like funtions, valid_func
// should check for leading whitespace.
template<typename StringToNumberTraits>
bool StringToNumber(const typename StringToNumberTraits::string_type& input,
typename StringToNumberTraits::value_type* output) {
typedef StringToNumberTraits traits;
errno = 0; // Thread-safe? It is on at least Mac, Linux, and Windows.
typename traits::string_type::value_type* endptr = NULL;
typename traits::value_type value = traits::convert_func(input.c_str(),
&endptr);
*output = value;
// Cases to return false:
// - If errno is ERANGE, there was an overflow or underflow.
// - If the input string is empty, there was nothing to parse.
// - If endptr does not point to the end of the string, there are either
// characters remaining in the string after a parsed number, or the string
// does not begin with a parseable number. endptr is compared to the
// expected end given the string's stated length to correctly catch cases
// where the string contains embedded NUL characters.
// - valid_func determines that the input is not in preferred form.
return errno == 0 &&
!input.empty() &&
input.c_str() + input.length() == endptr &&
traits::valid_func(input);
}
class StringToLongTraits {
public:
typedef std::string string_type;
typedef long value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtol(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class String16ToLongTraits {
public:
typedef string16 string_type;
typedef long value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#if defined(WCHAR_T_IS_UTF16)
return wcstol(str, endptr, kBase);
#elif defined(WCHAR_T_IS_UTF32)
std::string ascii_string = UTF16ToASCII(string16(str));
char* ascii_end = NULL;
value_type ret = strtol(ascii_string.c_str(), &ascii_end, kBase);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
class StringToInt64Traits {
public:
typedef std::string string_type;
typedef int64 value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _strtoi64(str, endptr, kBase);
#else // assume OS_POSIX
return strtoll(str, endptr, kBase);
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class String16ToInt64Traits {
public:
typedef string16 string_type;
typedef int64 value_type;
static const int kBase = 10;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#ifdef OS_WIN
return _wcstoi64(str, endptr, kBase);
#else // assume OS_POSIX
std::string ascii_string = UTF16ToASCII(string16(str));
char* ascii_end = NULL;
value_type ret = strtoll(ascii_string.c_str(), &ascii_end, kBase);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
// For the HexString variants, use the unsigned variants like strtoul for
// convert_func so that input like "0x80000000" doesn't result in an overflow.
class HexStringToLongTraits {
public:
typedef std::string string_type;
typedef long value_type;
static const int kBase = 16;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return strtoul(str, endptr, kBase);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class HexString16ToLongTraits {
public:
typedef string16 string_type;
typedef long value_type;
static const int kBase = 16;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
#if defined(WCHAR_T_IS_UTF16)
return wcstoul(str, endptr, kBase);
#elif defined(WCHAR_T_IS_UTF32)
std::string ascii_string = UTF16ToASCII(string16(str));
char* ascii_end = NULL;
value_type ret = strtoul(ascii_string.c_str(), &ascii_end, kBase);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
#endif
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
class StringToDoubleTraits {
public:
typedef std::string string_type;
typedef double value_type;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
return dmg_fp::strtod(str, endptr);
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !isspace(str[0]);
}
};
class String16ToDoubleTraits {
public:
typedef string16 string_type;
typedef double value_type;
static inline value_type convert_func(const string_type::value_type* str,
string_type::value_type** endptr) {
// Because dmg_fp::strtod does not like char16, we convert it to ASCII.
// In theory, this should be safe, but it's possible that 16-bit chars
// might get ignored by accident causing something to be parsed when it
// shouldn't.
std::string ascii_string = UTF16ToASCII(string16(str));
char* ascii_end = NULL;
value_type ret = dmg_fp::strtod(ascii_string.c_str(), &ascii_end);
if (ascii_string.c_str() + ascii_string.length() == ascii_end) {
// Put endptr at end of input string, so it's not recognized as an error.
*endptr =
const_cast<string_type::value_type*>(str) + ascii_string.length();
}
return ret;
}
static inline bool valid_func(const string_type& str) {
return !str.empty() && !iswspace(str[0]);
}
};
} // namespace
namespace base {
bool IsWprintfFormatPortable(const wchar_t* format) {
for (const wchar_t* position = format; *position != '\0'; ++position) {
if (*position == '%') {
bool in_specification = true;
bool modifier_l = false;
while (in_specification) {
// Eat up characters until reaching a known specifier.
if (*++position == '\0') {
// The format string ended in the middle of a specification. Call
// it portable because no unportable specifications were found. The
// string is equally broken on all platforms.
return true;
}
if (*position == 'l') {
// 'l' is the only thing that can save the 's' and 'c' specifiers.
modifier_l = true;
} else if (((*position == 's' || *position == 'c') && !modifier_l) ||
*position == 'S' || *position == 'C' || *position == 'F' ||
*position == 'D' || *position == 'O' || *position == 'U') {
// Not portable.
return false;
}
if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
// Portable, keep scanning the rest of the format string.
in_specification = false;
}
}
}
}
return true;
}
} // namespace base
const std::string& EmptyString() {
return Singleton<EmptyStrings>::get()->s;
}
const std::wstring& EmptyWString() {
return Singleton<EmptyStrings>::get()->ws;
}
const string16& EmptyString16() {
return Singleton<EmptyStrings>::get()->s16;
}
const wchar_t kWhitespaceWide[] = {
0x0009, // <control-0009> to <control-000D>
0x000A,
0x000B,
0x000C,
0x000D,
0x0020, // Space
0x0085, // <control-0085>
0x00A0, // No-Break Space
0x1680, // Ogham Space Mark
0x180E, // Mongolian Vowel Separator
0x2000, // En Quad to Hair Space
0x2001,
0x2002,
0x2003,
0x2004,
0x2005,
0x2006,
0x2007,
0x2008,
0x2009,
0x200A,
0x200C, // Zero Width Non-Joiner
0x2028, // Line Separator
0x2029, // Paragraph Separator
0x202F, // Narrow No-Break Space
0x205F, // Medium Mathematical Space
0x3000, // Ideographic Space
0
};
const char kWhitespaceASCII[] = {
0x09, // <control-0009> to <control-000D>
0x0A,
0x0B,
0x0C,
0x0D,
0x20, // Space
0
};
const char* const kCodepageUTF8 = "UTF-8";
template<typename STR>
TrimPositions TrimStringT(const STR& input,
const typename STR::value_type trim_chars[],
TrimPositions positions,
STR* output) {
// Find the edges of leading/trailing whitespace as desired.
const typename STR::size_type last_char = input.length() - 1;
const typename STR::size_type first_good_char = (positions & TRIM_LEADING) ?
input.find_first_not_of(trim_chars) : 0;
const typename STR::size_type last_good_char = (positions & TRIM_TRAILING) ?
input.find_last_not_of(trim_chars) : last_char;
// When the string was all whitespace, report that we stripped off whitespace
// from whichever position the caller was interested in. For empty input, we
// stripped no whitespace, but we still need to clear |output|.
if (input.empty() ||
(first_good_char == STR::npos) || (last_good_char == STR::npos)) {
bool input_was_empty = input.empty(); // in case output == &input
output->clear();
return input_was_empty ? TRIM_NONE : positions;
}
// Trim the whitespace.
*output =
input.substr(first_good_char, last_good_char - first_good_char + 1);
// Return where we trimmed from.
return static_cast<TrimPositions>(
((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
}
bool TrimString(const std::wstring& input,
const wchar_t trim_chars[],
std::wstring* output) {
return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
}
bool TrimString(const std::string& input,
const char trim_chars[],
std::string* output) {
return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
}
TrimPositions TrimWhitespace(const std::wstring& input,
TrimPositions positions,
std::wstring* output) {
return TrimStringT(input, kWhitespaceWide, positions, output);
}
TrimPositions TrimWhitespaceASCII(const std::string& input,
TrimPositions positions,
std::string* output) {
return TrimStringT(input, kWhitespaceASCII, positions, output);
}
// This function is only for backward-compatibility.
// To be removed when all callers are updated.
TrimPositions TrimWhitespace(const std::string& input,
TrimPositions positions,
std::string* output) {
return TrimWhitespaceASCII(input, positions, output);
}
std::wstring CollapseWhitespace(const std::wstring& text,
bool trim_sequences_with_line_breaks) {
std::wstring result;
result.resize(text.size());
// Set flags to pretend we're already in a trimmed whitespace sequence, so we
// will trim any leading whitespace.
bool in_whitespace = true;
bool already_trimmed = true;
int chars_written = 0;
for (std::wstring::const_iterator i(text.begin()); i != text.end(); ++i) {
if (IsWhitespace(*i)) {
if (!in_whitespace) {
// Reduce all whitespace sequences to a single space.
in_whitespace = true;
result[chars_written++] = L' ';
}
if (trim_sequences_with_line_breaks && !already_trimmed &&
((*i == '\n') || (*i == '\r'))) {
// Whitespace sequences containing CR or LF are eliminated entirely.
already_trimmed = true;
--chars_written;
}
} else {
// Non-whitespace chracters are copied straight across.
in_whitespace = false;
already_trimmed = false;
result[chars_written++] = *i;
}
}
if (in_whitespace && !already_trimmed) {
// Any trailing whitespace is eliminated.
--chars_written;
}
result.resize(chars_written);
return result;
}
std::string WideToASCII(const std::wstring& wide) {
DCHECK(IsStringASCII(wide));
return std::string(wide.begin(), wide.end());
}
std::wstring ASCIIToWide(const std::string& ascii) {
DCHECK(IsStringASCII(ascii));
return std::wstring(ascii.begin(), ascii.end());
}
std::string UTF16ToASCII(const string16& utf16) {
DCHECK(IsStringASCII(utf16));
return std::string(utf16.begin(), utf16.end());
}
string16 ASCIIToUTF16(const std::string& ascii) {
DCHECK(IsStringASCII(ascii));
return string16(ascii.begin(), ascii.end());
}
// Latin1 is just the low range of Unicode, so we can copy directly to convert.
bool WideToLatin1(const std::wstring& wide, std::string* latin1) {
std::string output;
output.resize(wide.size());
latin1->clear();
for (size_t i = 0; i < wide.size(); i++) {
if (wide[i] > 255)
return false;
output[i] = static_cast<char>(wide[i]);
}
latin1->swap(output);
return true;
}
bool IsString8Bit(const std::wstring& str) {
for (size_t i = 0; i < str.length(); i++) {
if (str[i] > 255)
return false;
}
return true;
}
template<class STR>
static bool DoIsStringASCII(const STR& str) {
for (size_t i = 0; i < str.length(); i++) {
typename ToUnsigned<typename STR::value_type>::Unsigned c = str[i];
if (c > 0x7F)
return false;
}
return true;
}
bool IsStringASCII(const std::wstring& str) {
return DoIsStringASCII(str);
}
#if !defined(WCHAR_T_IS_UTF16)
bool IsStringASCII(const string16& str) {
return DoIsStringASCII(str);
}
#endif
bool IsStringASCII(const std::string& str) {
return DoIsStringASCII(str);
}
// Helper functions that determine whether the given character begins a
// UTF-8 sequence of bytes with the given length. A character satisfies
// "IsInUTF8Sequence" if it is anything but the first byte in a multi-byte
// character.
static inline bool IsBegin2ByteUTF8(int c) {
return (c & 0xE0) == 0xC0;
}
static inline bool IsBegin3ByteUTF8(int c) {
return (c & 0xF0) == 0xE0;
}
static inline bool IsBegin4ByteUTF8(int c) {
return (c & 0xF8) == 0xF0;
}
static inline bool IsInUTF8Sequence(int c) {
return (c & 0xC0) == 0x80;
}
// This function was copied from Mozilla, with modifications. The original code
// was 'IsUTF8' in xpcom/string/src/nsReadableUtils.cpp. The license block for
// this function is:
// This function subject to the Mozilla Public License Version
// 1.1 (the "License"); you may not use this code except in compliance with
// the License. You may obtain a copy of the License at
// http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis,
// WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
// for the specific language governing rights and limitations under the
// License.
//
// The Original Code is mozilla.org code.
//
// The Initial Developer of the Original Code is
// Netscape Communications Corporation.
// Portions created by the Initial Developer are Copyright (C) 2000
// the Initial Developer. All Rights Reserved.
//
// Contributor(s):
// Scott Collins <scc@mozilla.org> (original author)
//
// This is a template so that it can be run on wide and 8-bit strings. We want
// to run it on wide strings when we have input that we think may have
// originally been UTF-8, but has been converted to wide characters because
// that's what we (and Windows) use internally.
template<typename CHAR>
static bool IsStringUTF8T(const CHAR* str, int length) {
bool overlong = false;
bool surrogate = false;
bool nonchar = false;
// overlong byte upper bound
typename ToUnsigned<CHAR>::Unsigned olupper = 0;
// surrogate byte lower bound
typename ToUnsigned<CHAR>::Unsigned slower = 0;
// incremented when inside a multi-byte char to indicate how many bytes
// are left in the sequence
int positions_left = 0;
for (int i = 0; i < length; i++) {
// This whole function assume an unsigned value so force its conversion to
// an unsigned value.
typename ToUnsigned<CHAR>::Unsigned c = str[i];
if (c < 0x80)
continue; // ASCII
if (c <= 0xC1) {
// [80-BF] where not expected, [C0-C1] for overlong
return false;
} else if (IsBegin2ByteUTF8(c)) {
positions_left = 1;
} else if (IsBegin3ByteUTF8(c)) {
positions_left = 2;
if (c == 0xE0) {
// to exclude E0[80-9F][80-BF]
overlong = true;
olupper = 0x9F;
} else if (c == 0xED) {
// ED[A0-BF][80-BF]: surrogate codepoint
surrogate = true;
slower = 0xA0;
} else if (c == 0xEF) {
// EF BF [BE-BF] : non-character
// TODO(jungshik): EF B7 [90-AF] should be checked as well.
nonchar = true;
}
} else if (c <= 0xF4) {
positions_left = 3;
nonchar = true;
if (c == 0xF0) {
// to exclude F0[80-8F][80-BF]{2}
overlong = true;
olupper = 0x8F;
} else if (c == 0xF4) {
// to exclude F4[90-BF][80-BF]
// actually not surrogates but codepoints beyond 0x10FFFF
surrogate = true;
slower = 0x90;
}
} else {
return false;
}
// eat the rest of this multi-byte character
while (positions_left) {
positions_left--;
i++;
c = str[i];
if (!c)
return false; // end of string but not end of character sequence
// non-character : EF BF [BE-BF] or F[0-7] [89AB]F BF [BE-BF]
if (nonchar && ((!positions_left && c < 0xBE) ||
(positions_left == 1 && c != 0xBF) ||
(positions_left == 2 && 0x0F != (0x0F & c) ))) {
nonchar = false;
}
if (!IsInUTF8Sequence(c) || (overlong && c <= olupper) ||
(surrogate && slower <= c) || (nonchar && !positions_left) ) {
return false;
}
overlong = surrogate = false;
}
}
return true;
}
bool IsStringUTF8(const std::string& str) {
return IsStringUTF8T(str.data(), str.length());
}
bool IsStringWideUTF8(const std::wstring& str) {
return IsStringUTF8T(str.data(), str.length());
}
template<typename Iter>
static inline bool DoLowerCaseEqualsASCII(Iter a_begin,
Iter a_end,
const char* b) {
for (Iter it = a_begin; it != a_end; ++it, ++b) {
if (!*b || ToLowerASCII(*it) != *b)
return false;
}
return *b == 0;
}
// Front-ends for LowerCaseEqualsASCII.
bool LowerCaseEqualsASCII(const std::string& a, const char* b) {
return DoLowerCaseEqualsASCII(a.begin(), a.end(), b);
}
bool LowerCaseEqualsASCII(const std::wstring& a, const char* b) {
return DoLowerCaseEqualsASCII(a.begin(), a.end(), b);
}
bool LowerCaseEqualsASCII(std::string::const_iterator a_begin,
std::string::const_iterator a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(std::wstring::const_iterator a_begin,
std::wstring::const_iterator a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(const char* a_begin,
const char* a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool LowerCaseEqualsASCII(const wchar_t* a_begin,
const wchar_t* a_end,
const char* b) {
return DoLowerCaseEqualsASCII(a_begin, a_end, b);
}
bool EqualsASCII(const string16& a, const StringPiece& b) {
if (a.length() != b.length())
return false;
return std::equal(b.begin(), b.end(), a.begin());
}
bool StartsWithASCII(const std::string& str,
const std::string& search,
bool case_sensitive) {
if (case_sensitive)
return str.compare(0, search.length(), search) == 0;
else
return base::strncasecmp(str.c_str(), search.c_str(), search.length()) == 0;
}
bool StartsWith(const std::wstring& str,
const std::wstring& search,
bool case_sensitive) {
if (case_sensitive)
return str.compare(0, search.length(), search) == 0;
else {
if (search.size() > str.size())
return false;
return std::equal(search.begin(), search.end(), str.begin(),
CaseInsensitiveCompare<wchar_t>());
}
}
DataUnits GetByteDisplayUnits(int64 bytes) {
// The byte thresholds at which we display amounts. A byte count is displayed
// in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
// This must match the DataUnits enum.
static const int64 kUnitThresholds[] = {
0, // DATA_UNITS_BYTE,
3*1024, // DATA_UNITS_KILOBYTE,
2*1024*1024, // DATA_UNITS_MEGABYTE,
1024*1024*1024 // DATA_UNITS_GIGABYTE,
};
if (bytes < 0) {
NOTREACHED() << "Negative bytes value";
return DATA_UNITS_BYTE;
}
int unit_index = arraysize(kUnitThresholds);
while (--unit_index > 0) {
if (bytes >= kUnitThresholds[unit_index])
break;
}
DCHECK(unit_index >= DATA_UNITS_BYTE && unit_index <= DATA_UNITS_GIGABYTE);
return DataUnits(unit_index);
}
// TODO(mpcomplete): deal with locale
// Byte suffixes. This must match the DataUnits enum.
static const wchar_t* const kByteStrings[] = {
L"B",
L"kB",
L"MB",
L"GB"
};
static const wchar_t* const kSpeedStrings[] = {
L"B/s",
L"kB/s",
L"MB/s",
L"GB/s"
};
std::wstring FormatBytesInternal(int64 bytes,
DataUnits units,
bool show_units,
const wchar_t* const* suffix) {
if (bytes < 0) {
NOTREACHED() << "Negative bytes value";
return std::wstring();
}
DCHECK(units >= DATA_UNITS_BYTE && units <= DATA_UNITS_GIGABYTE);
// Put the quantity in the right units.
double unit_amount = static_cast<double>(bytes);
for (int i = 0; i < units; ++i)
unit_amount /= 1024.0;
wchar_t tmp[64];
// If the first decimal digit is 0, don't show it.
double int_part;
double fractional_part = modf(unit_amount, &int_part);
modf(fractional_part * 10, &int_part);
if (int_part == 0) {
base::swprintf(tmp, arraysize(tmp),
L"%lld", static_cast<int64>(unit_amount));
} else {
base::swprintf(tmp, arraysize(tmp), L"%.1lf", unit_amount);
}
std::wstring ret(tmp);
if (show_units) {
ret += L" ";
ret += suffix[units];
}
return ret;
}
std::wstring FormatBytes(int64 bytes, DataUnits units, bool show_units) {
return FormatBytesInternal(bytes, units, show_units, kByteStrings);
}
std::wstring FormatSpeed(int64 bytes, DataUnits units, bool show_units) {
return FormatBytesInternal(bytes, units, show_units, kSpeedStrings);
}
template<class StringType>
void DoReplaceSubstringsAfterOffset(StringType* str,
typename StringType::size_type start_offset,
const StringType& find_this,
const StringType& replace_with,
bool replace_all) {
if ((start_offset == StringType::npos) || (start_offset >= str->length()))
return;
DCHECK(!find_this.empty());
for (typename StringType::size_type offs(str->find(find_this, start_offset));
offs != StringType::npos; offs = str->find(find_this, offs)) {
str->replace(offs, find_this.length(), replace_with);
offs += replace_with.length();
if (!replace_all)
break;
}
}
void ReplaceFirstSubstringAfterOffset(string16* str,
string16::size_type start_offset,
const string16& find_this,
const string16& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
false); // replace first instance
}
void ReplaceFirstSubstringAfterOffset(std::string* str,
std::string::size_type start_offset,
const std::string& find_this,
const std::string& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
false); // replace first instance
}
void ReplaceSubstringsAfterOffset(string16* str,
string16::size_type start_offset,
const string16& find_this,
const string16& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
true); // replace all instances
}
void ReplaceSubstringsAfterOffset(std::string* str,
std::string::size_type start_offset,
const std::string& find_this,
const std::string& replace_with) {
DoReplaceSubstringsAfterOffset(str, start_offset, find_this, replace_with,
true); // replace all instances
}
// Overloaded wrappers around vsnprintf and vswprintf. The buf_size parameter
// is the size of the buffer. These return the number of characters in the
// formatted string excluding the NUL terminator. If the buffer is not
// large enough to accommodate the formatted string without truncation, they
// return the number of characters that would be in the fully-formatted string
// (vsnprintf, and vswprintf on Windows), or -1 (vswprintf on POSIX platforms).
inline int vsnprintfT(char* buffer,
size_t buf_size,
const char* format,
va_list argptr) {
return base::vsnprintf(buffer, buf_size, format, argptr);
}
inline int vsnprintfT(wchar_t* buffer,
size_t buf_size,
const wchar_t* format,
va_list argptr) {
return base::vswprintf(buffer, buf_size, format, argptr);
}
// Templatized backend for StringPrintF/StringAppendF. This does not finalize
// the va_list, the caller is expected to do that.
template <class StringType>
static void StringAppendVT(StringType* dst,
const typename StringType::value_type* format,
va_list ap) {
// First try with a small fixed size buffer.
// This buffer size should be kept in sync with StringUtilTest.GrowBoundary
// and StringUtilTest.StringPrintfBounds.
typename StringType::value_type stack_buf[1024];
va_list backup_ap;
base::va_copy(backup_ap, ap);
#if !defined(OS_WIN)
errno = 0;
#endif
int result = vsnprintfT(stack_buf, arraysize(stack_buf), format, backup_ap);
va_end(backup_ap);
if (result >= 0 && result < static_cast<int>(arraysize(stack_buf))) {
// It fit.
dst->append(stack_buf, result);
return;
}
// Repeatedly increase buffer size until it fits.
int mem_length = arraysize(stack_buf);
while (true) {
if (result < 0) {
#if !defined(OS_WIN)
// On Windows, vsnprintfT always returns the number of characters in a
// fully-formatted string, so if we reach this point, something else is
// wrong and no amount of buffer-doubling is going to fix it.
if (errno != 0 && errno != EOVERFLOW)
#endif
{
// If an error other than overflow occurred, it's never going to work.
DLOG(WARNING) << "Unable to printf the requested string due to error.";
return;
}
// Try doubling the buffer size.
mem_length *= 2;
} else {
// We need exactly "result + 1" characters.
mem_length = result + 1;
}
if (mem_length > 32 * 1024 * 1024) {
// That should be plenty, don't try anything larger. This protects
// against huge allocations when using vsnprintfT implementations that
// return -1 for reasons other than overflow without setting errno.
DLOG(WARNING) << "Unable to printf the requested string due to size.";
return;
}
std::vector<typename StringType::value_type> mem_buf(mem_length);
// Restore the va_list before we use it again.
base::va_copy(backup_ap, ap);
result = vsnprintfT(&mem_buf[0], mem_length, format, ap);
va_end(backup_ap);
if ((result >= 0) && (result < mem_length)) {
// It fit.
dst->append(&mem_buf[0], result);
return;
}
}
}
namespace {
template <typename STR, typename INT, typename UINT, bool NEG>
struct IntToStringT {
// This is to avoid a compiler warning about unary minus on unsigned type.
// For example, say you had the following code:
// template <typename INT>
// INT abs(INT value) { return value < 0 ? -value : value; }
// Even though if INT is unsigned, it's impossible for value < 0, so the
// unary minus will never be taken, the compiler will still generate a
// warning. We do a little specialization dance...
template <typename INT2, typename UINT2, bool NEG2>
struct ToUnsignedT { };
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, false> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value);
}
};
template <typename INT2, typename UINT2>
struct ToUnsignedT<INT2, UINT2, true> {
static UINT2 ToUnsigned(INT2 value) {
return static_cast<UINT2>(value < 0 ? -value : value);
}
};
static STR IntToString(INT value) {
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
// So round up to allocate 3 output characters per byte, plus 1 for '-'.
const int kOutputBufSize = 3 * sizeof(INT) + 1;
// Allocate the whole string right away, we will right back to front, and
// then return the substr of what we ended up using.
STR outbuf(kOutputBufSize, 0);
bool is_neg = value < 0;
// Even though is_neg will never be true when INT is parameterized as
// unsigned, even the presence of the unary operation causes a warning.
UINT res = ToUnsignedT<INT, UINT, NEG>::ToUnsigned(value);
for (typename STR::iterator it = outbuf.end();;) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>((res % 10) + '0');
res /= 10;
// We're done..
if (res == 0) {
if (is_neg) {
--it;
DCHECK(it != outbuf.begin());
*it = static_cast<typename STR::value_type>('-');
}
return STR(it, outbuf.end());
}
}
NOTREACHED();
return STR();
}
};
}
std::string IntToString(int value) {
return IntToStringT<std::string, int, unsigned int, true>::
IntToString(value);
}
std::wstring IntToWString(int value) {
return IntToStringT<std::wstring, int, unsigned int, true>::
IntToString(value);
}
std::string UintToString(unsigned int value) {
return IntToStringT<std::string, unsigned int, unsigned int, false>::
IntToString(value);
}
std::wstring UintToWString(unsigned int value) {
return IntToStringT<std::wstring, unsigned int, unsigned int, false>::
IntToString(value);
}
std::string Int64ToString(int64 value) {
return IntToStringT<std::string, int64, uint64, true>::
IntToString(value);
}
std::wstring Int64ToWString(int64 value) {
return IntToStringT<std::wstring, int64, uint64, true>::
IntToString(value);
}
std::string Uint64ToString(uint64 value) {
return IntToStringT<std::string, uint64, uint64, false>::
IntToString(value);
}
std::wstring Uint64ToWString(uint64 value) {
return IntToStringT<std::wstring, uint64, uint64, false>::
IntToString(value);
}
std::string DoubleToString(double value) {
// According to g_fmt.cc, it is sufficient to declare a buffer of size 32.
char buffer[32];
dmg_fp::g_fmt(buffer, value);
return std::string(buffer);
}
std::wstring DoubleToWString(double value) {
return ASCIIToWide(DoubleToString(value));
}
void StringAppendV(std::string* dst, const char* format, va_list ap) {
StringAppendVT(dst, format, ap);
}
void StringAppendV(std::wstring* dst, const wchar_t* format, va_list ap) {
StringAppendVT(dst, format, ap);
}
std::string StringPrintf(const char* format, ...) {
va_list ap;
va_start(ap, format);
std::string result;
StringAppendV(&result, format, ap);
va_end(ap);
return result;
}
std::wstring StringPrintf(const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
std::wstring result;
StringAppendV(&result, format, ap);
va_end(ap);
return result;
}
const std::string& SStringPrintf(std::string* dst, const char* format, ...) {
va_list ap;
va_start(ap, format);
dst->clear();
StringAppendV(dst, format, ap);
va_end(ap);
return *dst;
}
const std::wstring& SStringPrintf(std::wstring* dst,
const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
dst->clear();
StringAppendV(dst, format, ap);
va_end(ap);
return *dst;
}
void StringAppendF(std::string* dst, const char* format, ...) {
va_list ap;
va_start(ap, format);
StringAppendV(dst, format, ap);
va_end(ap);
}
void StringAppendF(std::wstring* dst, const wchar_t* format, ...) {
va_list ap;
va_start(ap, format);
StringAppendV(dst, format, ap);
va_end(ap);
}
template<typename STR>
static void SplitStringT(const STR& str,
const typename STR::value_type s,
bool trim_whitespace,
std::vector<STR>* r) {
size_t last = 0;
size_t i;
size_t c = str.size();
for (i = 0; i <= c; ++i) {
if (i == c || str[i] == s) {
size_t len = i - last;
STR tmp = str.substr(last, len);
if (trim_whitespace) {
STR t_tmp;
TrimWhitespace(tmp, TRIM_ALL, &t_tmp);
r->push_back(t_tmp);
} else {
r->push_back(tmp);
}
last = i + 1;
}
}
}
void SplitString(const std::wstring& str,
wchar_t s,
std::vector<std::wstring>* r) {
SplitStringT(str, s, true, r);
}
void SplitString(const std::string& str,
char s,
std::vector<std::string>* r) {
SplitStringT(str, s, true, r);
}
void SplitStringDontTrim(const std::wstring& str,
wchar_t s,
std::vector<std::wstring>* r) {
SplitStringT(str, s, false, r);
}
void SplitStringDontTrim(const std::string& str,
char s,
std::vector<std::string>* r) {
SplitStringT(str, s, false, r);
}
template<typename STR>
static STR JoinStringT(const std::vector<STR>& parts,
typename STR::value_type sep) {
if (parts.size() == 0) return STR();
STR result(parts[0]);
typename std::vector<STR>::const_iterator iter = parts.begin();
++iter;
for (; iter != parts.end(); ++iter) {
result += sep;
result += *iter;
}
return result;
}
std::string JoinString(const std::vector<std::string>& parts, char sep) {
return JoinStringT(parts, sep);
}
std::wstring JoinString(const std::vector<std::wstring>& parts, wchar_t sep) {
return JoinStringT(parts, sep);
}
void SplitStringAlongWhitespace(const std::wstring& str,
std::vector<std::wstring>* result) {
const size_t length = str.length();
if (!length)
return;
bool last_was_ws = false;
size_t last_non_ws_start = 0;
for (size_t i = 0; i < length; ++i) {
switch(str[i]) {
// HTML 5 defines whitespace as: space, tab, LF, line tab, FF, or CR.
case L' ':
case L'\t':
case L'\xA':
case L'\xB':
case L'\xC':
case L'\xD':
if (!last_was_ws) {
if (i > 0) {
result->push_back(
str.substr(last_non_ws_start, i - last_non_ws_start));
}
last_was_ws = true;
}
break;
default: // Not a space character.
if (last_was_ws) {
last_was_ws = false;
last_non_ws_start = i;
}
break;
}
}
if (!last_was_ws) {
result->push_back(
str.substr(last_non_ws_start, length - last_non_ws_start));
}
}
string16 ReplaceStringPlaceholders(const string16& format_string,
const string16& a,
size_t* offset) {
std::vector<size_t> offsets;
string16 result = ReplaceStringPlaceholders(format_string, a,
string16(),
string16(),
string16(), &offsets);
DCHECK(offsets.size() == 1);
if (offset) {
*offset = offsets[0];
}
return result;
}
string16 ReplaceStringPlaceholders(const string16& format_string,
const string16& a,
const string16& b,
std::vector<size_t>* offsets) {
return ReplaceStringPlaceholders(format_string, a, b, string16(),
string16(), offsets);
}
string16 ReplaceStringPlaceholders(const string16& format_string,
const string16& a,
const string16& b,
const string16& c,
std::vector<size_t>* offsets) {
return ReplaceStringPlaceholders(format_string, a, b, c, string16(),
offsets);
}
string16 ReplaceStringPlaceholders(const string16& format_string,
const string16& a,
const string16& b,
const string16& c,
const string16& d,
std::vector<size_t>* offsets) {
// We currently only support up to 4 place holders ($1 through $4), although
// it's easy enough to add more.
const string16* subst_texts[] = { &a, &b, &c, &d };
string16 formatted;
formatted.reserve(format_string.length() + a.length() +
b.length() + c.length() + d.length());
std::vector<ReplacementOffset> r_offsets;
// Replace $$ with $ and $1-$4 with placeholder text if it exists.
for (string16::const_iterator i = format_string.begin();
i != format_string.end(); ++i) {
if ('$' == *i) {
if (i + 1 != format_string.end()) {
++i;
DCHECK('$' == *i || ('1' <= *i && *i <= '4')) <<
"Invalid placeholder: " << *i;
if ('$' == *i) {
formatted.push_back('$');
} else {
int index = *i - '1';
if (offsets) {
ReplacementOffset r_offset(index,
static_cast<int>(formatted.size()));
r_offsets.insert(std::lower_bound(r_offsets.begin(),
r_offsets.end(), r_offset,
&CompareParameter),
r_offset);
}
formatted.append(*subst_texts[index]);
}
}
} else {
formatted.push_back(*i);
}
}
if (offsets) {
for (std::vector<ReplacementOffset>::const_iterator i = r_offsets.begin();
i != r_offsets.end(); ++i) {
offsets->push_back(i->offset);
}
}
return formatted;
}
template <class CHAR>
static bool IsWildcard(CHAR character) {
return character == '*' || character == '?';
}
// Move the strings pointers to the point where they start to differ.
template <class CHAR>
static void EatSameChars(const CHAR** pattern, const CHAR** string) {
bool escaped = false;
while (**pattern && **string) {
if (!escaped && IsWildcard(**pattern)) {
// We don't want to match wildcard here, except if it's escaped.
return;
}
// Check if the escapement char is found. If so, skip it and move to the
// next character.
if (!escaped && **pattern == L'\\') {
escaped = true;
(*pattern)++;
continue;
}
// Check if the chars match, if so, increment the ptrs.
if (**pattern == **string) {
(*pattern)++;
(*string)++;
} else {
// Uh ho, it did not match, we are done. If the last char was an
// escapement, that means that it was an error to advance the ptr here,
// let's put it back where it was. This also mean that the MatchPattern
// function will return false because if we can't match an escape char
// here, then no one will.
if (escaped) {
(*pattern)--;
}
return;
}
escaped = false;
}
}
template <class CHAR>
static void EatWildcard(const CHAR** pattern) {
while(**pattern) {
if (!IsWildcard(**pattern))
return;
(*pattern)++;
}
}
template <class CHAR>
static bool MatchPatternT(const CHAR* eval, const CHAR* pattern) {
// Eat all the matching chars.
EatSameChars(&pattern, &eval);
// If the string is empty, then the pattern must be empty too, or contains
// only wildcards.
if (*eval == 0) {
EatWildcard(&pattern);
if (*pattern)
return false;
return true;
}
// Pattern is empty but not string, this is not a match.
if (*pattern == 0)
return false;
// If this is a question mark, then we need to compare the rest with
// the current string or the string with one character eaten.
if (pattern[0] == '?') {
if (MatchPatternT(eval, pattern + 1) ||
MatchPatternT(eval + 1, pattern + 1))
return true;
}
// This is a *, try to match all the possible substrings with the remainder
// of the pattern.
if (pattern[0] == '*') {
while (*eval) {
if (MatchPatternT(eval, pattern + 1))
return true;
eval++;
}
// We reached the end of the string, let see if the pattern contains only
// wildcards.
if (*eval == 0) {
EatWildcard(&pattern);
if (*pattern)
return false;
return true;
}
}
return false;
}
bool MatchPattern(const std::wstring& eval, const std::wstring& pattern) {
return MatchPatternT(eval.c_str(), pattern.c_str());
}
bool MatchPattern(const std::string& eval, const std::string& pattern) {
return MatchPatternT(eval.c_str(), pattern.c_str());
}
// For the various *ToInt conversions, there are no *ToIntTraits classes to use
// because there's no such thing as strtoi. Use *ToLongTraits through a cast
// instead, requiring that long and int are compatible and equal-width. They
// are on our target platforms.
bool StringToInt(const std::string& input, int* output) {
COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_strtol_to_int);
return StringToNumber<StringToLongTraits>(input,
reinterpret_cast<long*>(output));
}
bool StringToInt(const string16& input, int* output) {
COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_wcstol_to_int);
return StringToNumber<String16ToLongTraits>(input,
reinterpret_cast<long*>(output));
}
bool StringToInt64(const std::string& input, int64* output) {
return StringToNumber<StringToInt64Traits>(input, output);
}
bool StringToInt64(const string16& input, int64* output) {
return StringToNumber<String16ToInt64Traits>(input, output);
}
bool HexStringToInt(const std::string& input, int* output) {
COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_strtol_to_int);
return StringToNumber<HexStringToLongTraits>(input,
reinterpret_cast<long*>(output));
}
bool HexStringToInt(const string16& input, int* output) {
COMPILE_ASSERT(sizeof(int) == sizeof(long), cannot_wcstol_to_int);
return StringToNumber<HexString16ToLongTraits>(
input, reinterpret_cast<long*>(output));
}
namespace {
template<class CHAR>
bool HexDigitToIntT(const CHAR digit, uint8* val) {
if (digit >= '0' && digit <= '9')
*val = digit - '0';
else if (digit >= 'a' && digit <= 'f')
*val = 10 + digit - 'a';
else if (digit >= 'A' && digit <= 'F')
*val = 10 + digit - 'A';
else
return false;
return true;
}
template<typename STR>
bool HexStringToBytesT(const STR& input, std::vector<uint8>* output) {
DCHECK(output->size() == 0);
int count = input.size();
if (count == 0 || (count % 2) != 0)
return false;
for (int i = 0; i < count / 2; ++i) {
uint8 msb = 0; // most significant 4 bits
uint8 lsb = 0; // least significant 4 bits
if (!HexDigitToIntT(input[i * 2], &msb) ||
!HexDigitToIntT(input[i * 2 + 1], &lsb))
return false;
output->push_back((msb << 4) | lsb);
}
return true;
}
} // namespace
bool HexStringToBytes(const std::string& input, std::vector<uint8>* output) {
return HexStringToBytesT(input, output);
}
bool HexStringToBytes(const string16& input, std::vector<uint8>* output) {
return HexStringToBytesT(input, output);
}
int StringToInt(const std::string& value) {
int result;
StringToInt(value, &result);
return result;
}
int StringToInt(const string16& value) {
int result;
StringToInt(value, &result);
return result;
}
int64 StringToInt64(const std::string& value) {
int64 result;
StringToInt64(value, &result);
return result;
}
int64 StringToInt64(const string16& value) {
int64 result;
StringToInt64(value, &result);
return result;
}
int HexStringToInt(const std::string& value) {
int result;
HexStringToInt(value, &result);
return result;
}
int HexStringToInt(const string16& value) {
int result;
HexStringToInt(value, &result);
return result;
}
bool StringToDouble(const std::string& input, double* output) {
return StringToNumber<StringToDoubleTraits>(input, output);
}
bool StringToDouble(const string16& input, double* output) {
return StringToNumber<String16ToDoubleTraits>(input, output);
}
double StringToDouble(const std::string& value) {
double result;
StringToDouble(value, &result);
return result;
}
double StringToDouble(const string16& value) {
double result;
StringToDouble(value, &result);
return result;
}
// The following code is compatible with the OpenBSD lcpy interface. See:
// http://www.gratisoft.us/todd/papers/strlcpy.html
// ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
namespace {
template <typename CHAR>
size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
for (size_t i = 0; i < dst_size; ++i) {
if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL.
return i;
}
// We were left off at dst_size. We over copied 1 byte. Null terminate.
if (dst_size != 0)
dst[dst_size - 1] = 0;
// Count the rest of the |src|, and return it's length in characters.
while (src[dst_size]) ++dst_size;
return dst_size;
}
} // namespace
size_t base::strlcpy(char* dst, const char* src, size_t dst_size) {
return lcpyT<char>(dst, src, dst_size);
}
size_t base::wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
return lcpyT<wchar_t>(dst, src, dst_size);
}
bool ElideString(const std::wstring& input, int max_len, std::wstring* output) {
DCHECK(max_len >= 0);
if (static_cast<int>(input.length()) <= max_len) {
output->assign(input);
return false;
}
switch (max_len) {
case 0:
output->clear();
break;
case 1:
output->assign(input.substr(0, 1));
break;
case 2:
output->assign(input.substr(0, 2));
break;
case 3:
output->assign(input.substr(0, 1) + L"." +
input.substr(input.length() - 1));
break;
case 4:
output->assign(input.substr(0, 1) + L".." +
input.substr(input.length() - 1));
break;
default: {
int rstr_len = (max_len - 3) / 2;
int lstr_len = rstr_len + ((max_len - 3) % 2);
output->assign(input.substr(0, lstr_len) + L"..." +
input.substr(input.length() - rstr_len));
break;
}
}
return true;
}
std::string HexEncode(const void* bytes, size_t size) {
static const char kHexChars[] = "0123456789ABCDEF";
// Each input byte creates two output hex characters.
std::string ret(size * 2, '\0');
for (size_t i = 0; i < size; ++i) {
char b = reinterpret_cast<const char*>(bytes)[i];
ret[(i * 2)] = kHexChars[(b >> 4) & 0xf];
ret[(i * 2) + 1] = kHexChars[b & 0xf];
}
return ret;
}
|