1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "base/string_util.h"
#include <CoreFoundation/CoreFoundation.h>
#include <pthread.h>
#include <string>
#include <vector>
#include "base/logging.h"
#include "base/scoped_cftyperef.h"
#include "unicode/numfmt.h"
// Can't use strlcpy/wcslcpy, because they always returns the length of src,
// making it impossible to detect overflow. Because the reimplementation is
// too large to inline, StrNCpy and WcsNCpy are in this file, but since they
// don't make any non-inlined calls, there's no penalty relative to the libc
// routines.
template<typename CharType>
static inline bool StrNCpyT(CharType* dst, const CharType* src,
size_t dst_size, size_t src_size) {
// The initial value of count has room for a NUL terminator.
size_t count = std::min(dst_size, src_size + 1);
if (count == 0)
return false;
// Copy up to (count - 1) bytes, or until reaching a NUL terminator
while (--count != 0) {
if ((*dst++ = *src++) == '\0')
break;
}
// If the break never occurred, append a NUL terminator
if (count == 0) {
*dst = '\0';
// If the string was truncated, return false
if (*src != '\0')
return false;
}
return true;
}
bool StrNCpy(char* dst, const char* src,
size_t dst_size, size_t src_size) {
return StrNCpyT(dst, src, dst_size, src_size);
}
bool WcsNCpy(wchar_t* dst, const wchar_t* src,
size_t dst_size, size_t src_size) {
return StrNCpyT(dst, src, dst_size, src_size);
}
static NumberFormat* number_format_singleton = NULL;
static CFDateFormatterRef date_formatter = NULL;
static CFDateFormatterRef time_formatter = NULL;
static void DoInitializeStatics() {
UErrorCode status = U_ZERO_ERROR;
number_format_singleton = NumberFormat::createInstance(status);
DCHECK(U_SUCCESS(status));
scoped_cftyperef<CFLocaleRef> user_locale(CFLocaleCopyCurrent());
date_formatter = CFDateFormatterCreate(NULL,
user_locale,
kCFDateFormatterShortStyle, // date
NULL); // time
DCHECK(date_formatter);
time_formatter = CFDateFormatterCreate(NULL,
user_locale,
NULL, // date
kCFDateFormatterShortStyle); // time
DCHECK(time_formatter);
}
static void InitializeStatics() {
static pthread_once_t pthread_once_initialized = PTHREAD_ONCE_INIT;
pthread_once(&pthread_once_initialized, DoInitializeStatics);
}
// Convert the supplied cfsring into the specified encoding, and return it as
// an STL string of the template type. Returns an empty string on failure.
template<typename StringType>
static StringType CFStringToSTLStringWithEncodingT(CFStringRef cfstring,
CFStringEncoding encoding) {
CFIndex length = CFStringGetLength(cfstring);
if (length == 0)
return StringType();
CFRange whole_string = CFRangeMake(0, length);
CFIndex out_size;
CFIndex converted = CFStringGetBytes(cfstring,
whole_string,
encoding,
0, // lossByte
false, // isExternalRepresentation
NULL, // buffer
0, // maxBufLen
&out_size);
DCHECK(converted != 0 && out_size != 0);
if (converted == 0 || out_size == 0)
return StringType();
// out_size is the number of UInt8-sized units needed in the destination.
// A buffer allocated as UInt8 units might not be properly aligned to
// contain elements of StringType::value_type. Use a container for the
// proper value_type, and convert out_size by figuring the number of
// value_type elements per UInt8. Leave room for a NUL terminator.
typename StringType::size_type elements =
out_size * sizeof(UInt8) / sizeof(typename StringType::value_type) + 1;
// Make sure that integer truncation didn't occur. For the conversions done
// here, it never should.
DCHECK(((out_size * sizeof(UInt8)) %
sizeof(typename StringType::value_type)) == 0);
std::vector<typename StringType::value_type> out_buffer(elements);
converted = CFStringGetBytes(cfstring,
whole_string,
encoding,
0, // lossByte
false, // isExternalRepresentation
reinterpret_cast<UInt8*>(&out_buffer[0]),
out_size,
NULL); // usedBufLen
DCHECK(converted != 0);
if (converted == 0)
return StringType();
out_buffer[elements - 1] = '\0';
return StringType(&out_buffer[0]);
}
// Given an STL string |in| with an encoding specified by |in_encoding|,
// convert it to |out_encoding| and return it as an STL string of the
// |OutStringType| template type. Returns an empty string on failure.
template<typename OutStringType, typename InStringType>
static OutStringType STLStringToSTLStringWithEncodingsT(
const InStringType& in,
CFStringEncoding in_encoding,
CFStringEncoding out_encoding) {
typename InStringType::size_type in_length = in.length();
if (in_length == 0)
return OutStringType();
scoped_cftyperef<CFStringRef> cfstring(
CFStringCreateWithBytesNoCopy(NULL,
reinterpret_cast<const UInt8*>(in.c_str()),
in_length *
sizeof(typename InStringType::value_type),
in_encoding,
false,
kCFAllocatorNull));
DCHECK(cfstring);
if (!cfstring)
return OutStringType();
return CFStringToSTLStringWithEncodingT<OutStringType>(cfstring,
out_encoding);
}
// Specify the byte ordering explicitly, otherwise CFString will be confused
// when strings don't carry BOMs, as they typically won't.
static const CFStringEncoding kNarrowStringEncoding = kCFStringEncodingUTF8;
#ifdef __BIG_ENDIAN__
#if defined(__WCHAR_MAX__) && __WCHAR_MAX__ == 0xffff
static const CFStringEncoding kWideStringEncoding = kCFStringEncodingUTF16BE;
#else // __WCHAR_MAX__
static const CFStringEncoding kWideStringEncoding = kCFStringEncodingUTF32BE;
#endif // __WCHAR_MAX__
#else // __BIG_ENDIAN__
#if defined(__WCHAR_MAX__) && __WCHAR_MAX__ == 0xffff
static const CFStringEncoding kWideStringEncoding = kCFStringEncodingUTF16LE;
#else // __WCHAR_MAX__
static const CFStringEncoding kWideStringEncoding = kCFStringEncodingUTF32LE;
#endif // __WCHAR_MAX__
#endif // __BIG_ENDIAN__
std::string WideToUTF8(const std::wstring& wide) {
return STLStringToSTLStringWithEncodingsT<std::string>(
wide, kWideStringEncoding, kNarrowStringEncoding);
}
std::wstring UTF8ToWide(const std::string& utf8) {
return STLStringToSTLStringWithEncodingsT<std::wstring>(
utf8, kNarrowStringEncoding, kWideStringEncoding);
}
// Technically, the native multibyte encoding would be the encoding returned
// by CFStringGetSystemEncoding or GetApplicationTextEncoding, but I can't
// imagine anyone needing or using that from these APIs, so just treat UTF-8
// as though it were the native multibyte encoding.
std::string WideToNativeMB(const std::wstring& wide) {
return WideToUTF8(wide);
}
std::wstring NativeMBToWide(const std::string& native_mb) {
return UTF8ToWide(native_mb);
}
NumberFormat* NumberFormatSingleton() {
InitializeStatics();
return number_format_singleton;
}
int64 StringToInt64(const std::string& value) {
return atoll(value.c_str());
}
int64 StringToInt64(const std::wstring& value) {
return wcstoll(value.c_str(), NULL, 10);
}
|