summaryrefslogtreecommitdiffstats
path: root/base/sync_socket_win.cc
blob: 4fcd572084f72abc38d6b035873c6fa27ff93887 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/sync_socket.h"

#include "base/logging.h"
#include "base/win/scoped_handle.h"

namespace base {

using win::ScopedHandle;

namespace {
// IMPORTANT: do not change how this name is generated because it will break
// in sandboxed scenarios as we might have by-name policies that allow pipe
// creation. Also keep the secure random number generation.
const wchar_t kPipeNameFormat[] = L"\\\\.\\pipe\\chrome.sync.%u.%u.%lu";
const size_t kPipePathMax =  arraysize(kPipeNameFormat) + (3 * 10) + 1;

// To avoid users sending negative message lengths to Send/Receive
// we clamp message lengths, which are size_t, to no more than INT_MAX.
const size_t kMaxMessageLength = static_cast<size_t>(INT_MAX);

const int kOutBufferSize = 4096;
const int kInBufferSize = 4096;
const int kDefaultTimeoutMilliSeconds = 1000;

bool CreatePairImpl(HANDLE* socket_a, HANDLE* socket_b, bool overlapped) {
  DCHECK(socket_a != socket_b);
  DCHECK(*socket_a == SyncSocket::kInvalidHandle);
  DCHECK(*socket_b == SyncSocket::kInvalidHandle);

  wchar_t name[kPipePathMax];
  ScopedHandle handle_a;
  DWORD flags = PIPE_ACCESS_DUPLEX | FILE_FLAG_FIRST_PIPE_INSTANCE;
  if (overlapped)
    flags |= FILE_FLAG_OVERLAPPED;

  do {
    unsigned int rnd_name;
    if (rand_s(&rnd_name) != 0)
      return false;

    swprintf(name, kPipePathMax,
             kPipeNameFormat,
             GetCurrentProcessId(),
             GetCurrentThreadId(),
             rnd_name);

    handle_a.Set(CreateNamedPipeW(
        name,
        flags,
        PIPE_TYPE_BYTE | PIPE_READMODE_BYTE,
        1,
        kOutBufferSize,
        kInBufferSize,
        kDefaultTimeoutMilliSeconds,
        NULL));
  } while (!handle_a.IsValid() &&
           (GetLastError() == ERROR_PIPE_BUSY));

  if (!handle_a.IsValid()) {
    NOTREACHED();
    return false;
  }

  // The SECURITY_ANONYMOUS flag means that the server side (handle_a) cannot
  // impersonate the client (handle_b). This allows us not to care which side
  // ends up in which side of a privilege boundary.
  flags = SECURITY_SQOS_PRESENT | SECURITY_ANONYMOUS;
  if (overlapped)
    flags |= FILE_FLAG_OVERLAPPED;

  ScopedHandle handle_b(CreateFileW(name,
                                    GENERIC_READ | GENERIC_WRITE,
                                    0,          // no sharing.
                                    NULL,       // default security attributes.
                                    OPEN_EXISTING,  // opens existing pipe.
                                    flags,
                                    NULL));     // no template file.
  if (!handle_b.IsValid()) {
    DPLOG(ERROR) << "CreateFileW failed";
    return false;
  }

  if (!ConnectNamedPipe(handle_a, NULL)) {
    DWORD error = GetLastError();
    if (error != ERROR_PIPE_CONNECTED) {
      DPLOG(ERROR) << "ConnectNamedPipe failed";
      return false;
    }
  }

  *socket_a = handle_a.Take();
  *socket_b = handle_b.Take();

  return true;
}

// Inline helper to avoid having the cast everywhere.
DWORD GetNextChunkSize(size_t current_pos, size_t max_size) {
  // The following statement is for 64 bit portability.
  return static_cast<DWORD>(((max_size - current_pos) <= UINT_MAX) ?
      (max_size - current_pos) : UINT_MAX);
}

// Template function that supports calling ReadFile or WriteFile in an
// overlapped fashion and waits for IO completion.  The function also waits
// on an event that can be used to cancel the operation.  If the operation
// is cancelled, the function returns and closes the relevant socket object.
template <typename BufferType, typename Function>
size_t CancelableFileOperation(Function operation, HANDLE file,
                               BufferType* buffer, size_t length,
                               base::WaitableEvent* io_event,
                               base::WaitableEvent* cancel_event,
                               CancelableSyncSocket* socket,
                               DWORD timeout_in_ms) {
  // The buffer must be byte size or the length check won't make much sense.
  COMPILE_ASSERT(sizeof(buffer[0]) == sizeof(char), incorrect_buffer_type);
  DCHECK_LE(length, kMaxMessageLength);

  OVERLAPPED ol = {0};
  ol.hEvent = io_event->handle();
  size_t count = 0;
  while (count < length) {
    DWORD chunk = GetNextChunkSize(count, length);
    // This is either the ReadFile or WriteFile call depending on whether
    // we're receiving or sending data.
    DWORD len = 0;
    BOOL ok = operation(file, static_cast<BufferType*>(buffer) + count, chunk,
                        &len, &ol);
    if (!ok) {
      if (::GetLastError() == ERROR_IO_PENDING) {
        HANDLE events[] = { io_event->handle(), cancel_event->handle() };
        int wait_result = WaitForMultipleObjects(
            arraysize(events), events, FALSE, timeout_in_ms);
        if (wait_result == (WAIT_OBJECT_0 + 0)) {
          GetOverlappedResult(file, &ol, &len, TRUE);
        } else if (wait_result == (WAIT_OBJECT_0 + 1)) {
          VLOG(1) << "Shutdown was signaled. Closing socket.";
          CancelIo(file);
          socket->Close();
          count = 0;
          break;
        } else {
          // Timeout happened.
          DCHECK_EQ(WAIT_TIMEOUT, wait_result);
          if (!CancelIo(file)){
            DLOG(WARNING) << "CancelIo() failed";
          }
          break;
        }
      } else {
        break;
      }
    }

    count += len;

    // Quit the operation if we can't write/read anymore.
    if (len != chunk)
      break;
  }

  return (count > 0) ? count : 0;
}

}  // namespace

const SyncSocket::Handle SyncSocket::kInvalidHandle = INVALID_HANDLE_VALUE;

SyncSocket::SyncSocket() : handle_(kInvalidHandle) {}

SyncSocket::~SyncSocket() {
  Close();
}

// static
bool SyncSocket::CreatePair(SyncSocket* socket_a, SyncSocket* socket_b) {
  return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, false);
}

bool SyncSocket::Close() {
  if (handle_ == kInvalidHandle)
    return false;

  BOOL retval = CloseHandle(handle_);
  handle_ = kInvalidHandle;
  return retval ? true : false;
}

size_t SyncSocket::Send(const void* buffer, size_t length) {
  DCHECK_LE(length, kMaxMessageLength);
  size_t count = 0;
  while (count < length) {
    DWORD len;
    DWORD chunk = GetNextChunkSize(count, length);
    if (WriteFile(handle_, static_cast<const char*>(buffer) + count,
                  chunk, &len, NULL) == FALSE) {
      return (0 < count) ? count : 0;
    }
    count += len;
  }
  return count;
}

size_t SyncSocket::Receive(void* buffer, size_t length) {
  DCHECK_LE(length, kMaxMessageLength);
  size_t count = 0;
  while (count < length) {
    DWORD len;
    DWORD chunk = GetNextChunkSize(count, length);
    if (ReadFile(handle_, static_cast<char*>(buffer) + count,
                 chunk, &len, NULL) == FALSE) {
      return (0 < count) ? count : 0;
    }
    count += len;
  }
  return count;
}

size_t SyncSocket::Peek() {
  DWORD available = 0;
  PeekNamedPipe(handle_, NULL, 0, NULL, &available, NULL);
  return available;
}

CancelableSyncSocket::CancelableSyncSocket()
    : shutdown_event_(true, false), file_operation_(true, false) {
}

CancelableSyncSocket::CancelableSyncSocket(Handle handle)
    : SyncSocket(handle), shutdown_event_(true, false),
      file_operation_(true, false) {
}

bool CancelableSyncSocket::Shutdown() {
  // This doesn't shut down the pipe immediately, but subsequent Receive or Send
  // methods will fail straight away.
  shutdown_event_.Signal();
  return true;
}

bool CancelableSyncSocket::Close() {
  bool ret = SyncSocket::Close();
  shutdown_event_.Reset();
  return ret;
}

size_t CancelableSyncSocket::Send(const void* buffer, size_t length) {
  static const DWORD kWaitTimeOutInMs = 500;
  return CancelableFileOperation(
      &WriteFile, handle_, reinterpret_cast<const char*>(buffer),
      length, &file_operation_, &shutdown_event_, this, kWaitTimeOutInMs);
}

size_t CancelableSyncSocket::Receive(void* buffer, size_t length) {
  return CancelableFileOperation(&ReadFile, handle_,
      reinterpret_cast<char*>(buffer), length, &file_operation_,
      &shutdown_event_, this, INFINITE);
}

// static
bool CancelableSyncSocket::CreatePair(CancelableSyncSocket* socket_a,
                                      CancelableSyncSocket* socket_b) {
  return CreatePairImpl(&socket_a->handle_, &socket_b->handle_, true);
}


}  // namespace base