1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time.h"
#include <CoreFoundation/CFDate.h>
#include <CoreFoundation/CFTimeZone.h>
#include <mach/mach_time.h>
#include <sys/time.h>
#include <time.h>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/mac/scoped_cftyperef.h"
namespace base {
// The Time routines in this file use Mach and CoreFoundation APIs, since the
// POSIX definition of time_t in Mac OS X wraps around after 2038--and
// there are already cookie expiration dates, etc., past that time out in
// the field. Using CFDate prevents that problem, and using mach_absolute_time
// for TimeTicks gives us nice high-resolution interval timing.
// Time -----------------------------------------------------------------------
// Core Foundation uses a double second count since 2001-01-01 00:00:00 UTC.
// The UNIX epoch is 1970-01-01 00:00:00 UTC.
// Windows uses a Gregorian epoch of 1601. We need to match this internally
// so that our time representations match across all platforms. See bug 14734.
// irb(main):010:0> Time.at(0).getutc()
// => Thu Jan 01 00:00:00 UTC 1970
// irb(main):011:0> Time.at(-11644473600).getutc()
// => Mon Jan 01 00:00:00 UTC 1601
static const int64 kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600);
static const int64 kWindowsEpochDeltaMilliseconds =
kWindowsEpochDeltaSeconds * Time::kMillisecondsPerSecond;
// static
const int64 Time::kWindowsEpochDeltaMicroseconds =
kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond;
// Some functions in time.cc use time_t directly, so we provide an offset
// to convert from time_t (Unix epoch) and internal (Windows epoch).
// static
const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds;
// static
Time Time::Now() {
CFAbsoluteTime now =
CFAbsoluteTimeGetCurrent() + kCFAbsoluteTimeIntervalSince1970;
return Time(static_cast<int64>(now * kMicrosecondsPerSecond) +
kWindowsEpochDeltaMicroseconds);
}
// static
Time Time::NowFromSystemTime() {
// Just use Now() because Now() returns the system time.
return Now();
}
// static
Time Time::FromExploded(bool is_local, const Exploded& exploded) {
CFGregorianDate date;
date.second = exploded.second +
exploded.millisecond / static_cast<double>(kMillisecondsPerSecond);
date.minute = exploded.minute;
date.hour = exploded.hour;
date.day = exploded.day_of_month;
date.month = exploded.month;
date.year = exploded.year;
base::mac::ScopedCFTypeRef<CFTimeZoneRef>
time_zone(is_local ? CFTimeZoneCopySystem() : NULL);
CFAbsoluteTime seconds = CFGregorianDateGetAbsoluteTime(date, time_zone) +
kCFAbsoluteTimeIntervalSince1970;
return Time(static_cast<int64>(seconds * kMicrosecondsPerSecond) +
kWindowsEpochDeltaMicroseconds);
}
void Time::Explode(bool is_local, Exploded* exploded) const {
// Avoid rounding issues, by only putting the integral number of seconds
// (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|).
int64 microsecond = us_ % kMicrosecondsPerSecond;
if (microsecond < 0)
microsecond += kMicrosecondsPerSecond;
CFAbsoluteTime seconds = ((us_ - microsecond) / kMicrosecondsPerSecond) -
kWindowsEpochDeltaSeconds -
kCFAbsoluteTimeIntervalSince1970;
base::mac::ScopedCFTypeRef<CFTimeZoneRef>
time_zone(is_local ? CFTimeZoneCopySystem() : NULL);
CFGregorianDate date = CFAbsoluteTimeGetGregorianDate(seconds, time_zone);
// 1 = Monday, ..., 7 = Sunday.
int cf_day_of_week = CFAbsoluteTimeGetDayOfWeek(seconds, time_zone);
exploded->year = date.year;
exploded->month = date.month;
exploded->day_of_week = (cf_day_of_week == 7) ? 0 : cf_day_of_week - 1;
exploded->day_of_month = date.day;
exploded->hour = date.hour;
exploded->minute = date.minute;
// Make sure seconds are rounded down towards -infinity.
exploded->second = floor(date.second);
// Calculate milliseconds ourselves, since we rounded the |seconds|, making
// sure to round towards -infinity.
exploded->millisecond =
(microsecond >= 0) ? microsecond / kMicrosecondsPerMillisecond :
(microsecond - kMicrosecondsPerMillisecond + 1) /
kMicrosecondsPerMillisecond;
}
// TimeTicks ------------------------------------------------------------------
// static
TimeTicks TimeTicks::Now() {
uint64_t absolute_micro;
static mach_timebase_info_data_t timebase_info;
if (timebase_info.denom == 0) {
// Zero-initialization of statics guarantees that denom will be 0 before
// calling mach_timebase_info. mach_timebase_info will never set denom to
// 0 as that would be invalid, so the zero-check can be used to determine
// whether mach_timebase_info has already been called. This is
// recommended by Apple's QA1398.
kern_return_t kr = mach_timebase_info(&timebase_info);
DCHECK_EQ(KERN_SUCCESS, kr);
}
// mach_absolute_time is it when it comes to ticks on the Mac. Other calls
// with less precision (such as TickCount) just call through to
// mach_absolute_time.
// timebase_info converts absolute time tick units into nanoseconds. Convert
// to microseconds up front to stave off overflows.
absolute_micro = mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
timebase_info.numer / timebase_info.denom;
// Don't bother with the rollover handling that the Windows version does.
// With numer and denom = 1 (the expected case), the 64-bit absolute time
// reported in nanoseconds is enough to last nearly 585 years.
return TimeTicks(absolute_micro);
}
// static
TimeTicks TimeTicks::HighResNow() {
return Now();
}
} // namespace base
|