1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Weak pointers help in cases where you have many objects referring back to a
// shared object and you wish for the lifetime of the shared object to not be
// bound to the lifetime of the referrers. In other words, this is useful when
// reference counting is not a good fit.
//
// A common alternative to weak pointers is to have the shared object hold a
// list of all referrers, and then when the shared object is destroyed, it
// calls a method on the referrers to tell them to drop their references. This
// approach also requires the referrers to tell the shared object when they get
// destroyed so that the shared object can remove the referrer from its list of
// referrers. Such a solution works, but it is a bit complex.
//
// EXAMPLE:
//
// class Controller : public SupportsWeakPtr<Controller> {
// public:
// void SpawnWorker() { Worker::StartNew(AsWeakPtr()); }
// void WorkComplete(const Result& result) { ... }
// };
//
// class Worker {
// public:
// static void StartNew(const WeakPtr<Controller>& controller) {
// Worker* worker = new Worker(controller);
// // Kick off asynchronous processing...
// }
// private:
// Worker(const WeakPtr<Controller>& controller)
// : controller_(controller) {}
// void DidCompleteAsynchronousProcessing(const Result& result) {
// if (controller_)
// controller_->WorkComplete(result);
// }
// WeakPtr<Controller> controller_;
// };
//
// Given the above classes, a consumer may allocate a Controller object, call
// SpawnWorker several times, and then destroy the Controller object before all
// of the workers have completed. Because the Worker class only holds a weak
// pointer to the Controller, we don't have to worry about the Worker
// dereferencing the Controller back pointer after the Controller has been
// destroyed.
//
// WARNING: weak pointers are not threadsafe!!! You must only use a WeakPtr
// instance on thread where it was created.
#ifndef BASE_WEAK_PTR_H_
#define BASE_WEAK_PTR_H_
#include "base/logging.h"
#include "base/non_thread_safe.h"
#include "base/ref_counted.h"
namespace base {
namespace internal {
// These classes are part of the WeakPtr implementation.
// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
class WeakReference {
public:
class Flag : public RefCounted<Flag>, public NonThreadSafe {
public:
Flag(Flag** handle) : handle_(handle) {
}
~Flag() {
if (handle_)
*handle_ = NULL;
}
void AddRef() {
DCHECK(CalledOnValidThread());
RefCounted<Flag>::AddRef();
}
void Release() {
DCHECK(CalledOnValidThread());
RefCounted<Flag>::Release();
}
void Invalidate() { handle_ = NULL; }
bool is_valid() const { return handle_ != NULL; }
private:
Flag** handle_;
};
WeakReference() {}
WeakReference(Flag* flag) : flag_(flag) {}
bool is_valid() const { return flag_ && flag_->is_valid(); }
private:
scoped_refptr<Flag> flag_;
};
class WeakReferenceOwner {
public:
WeakReferenceOwner() : flag_(NULL) {
}
~WeakReferenceOwner() {
Invalidate();
}
WeakReference GetRef() const {
if (!flag_)
flag_ = new WeakReference::Flag(&flag_);
return WeakReference(flag_);
}
bool HasRefs() const {
return flag_ != NULL;
}
void Invalidate() {
if (flag_) {
flag_->Invalidate();
flag_ = NULL;
}
}
private:
mutable WeakReference::Flag* flag_;
};
// This class simplifies the implementation of WeakPtr's type conversion
// constructor by avoiding the need for a public accessor for ref_. A
// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
// base class gives us a way to access ref_ in a protected fashion.
class WeakPtrBase {
public:
WeakPtrBase() {
}
protected:
WeakPtrBase(const WeakReference& ref) : ref_(ref) {
}
WeakReference ref_;
};
} // namespace internal
template <typename T> class SupportsWeakPtr;
template <typename T> class WeakPtrFactory;
// The WeakPtr class holds a weak reference to |T*|.
//
// This class is designed to be used like a normal pointer. You should always
// null-test an object of this class before using it or invoking a method that
// may result in the underlying object being destroyed.
//
// EXAMPLE:
//
// class Foo { ... };
// WeakPtr<Foo> foo;
// if (foo)
// foo->method();
//
template <typename T>
class WeakPtr : public internal::WeakPtrBase {
public:
WeakPtr() : ptr_(NULL) {
}
// Allow conversion from U to T provided U "is a" T.
template <typename U>
WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.get()) {
}
T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
operator T*() const { return get(); }
T* operator*() const {
DCHECK(get() != NULL);
return *get();
}
T* operator->() const {
DCHECK(get() != NULL);
return get();
}
void reset() {
ref_ = internal::WeakReference();
ptr_ = NULL;
}
private:
friend class SupportsWeakPtr<T>;
friend class WeakPtrFactory<T>;
WeakPtr(const internal::WeakReference& ref, T* ptr)
: WeakPtrBase(ref), ptr_(ptr) {
}
// This pointer is only valid when ref_.is_valid() is true. Otherwise, its
// value is undefined (as opposed to NULL).
T* ptr_;
};
// A class may extend from SupportsWeakPtr to expose weak pointers to itself.
// This is useful in cases where you want others to be able to get a weak
// pointer to your class. It also has the property that you don't need to
// initialize it from your constructor.
template <class T>
class SupportsWeakPtr {
public:
SupportsWeakPtr() {}
WeakPtr<T> AsWeakPtr() {
return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
}
private:
internal::WeakReferenceOwner weak_reference_owner_;
DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
};
// A class may alternatively be composed of a WeakPtrFactory and thereby
// control how it exposes weak pointers to itself. This is helpful if you only
// need weak pointers within the implementation of a class. This class is also
// useful when working with primitive types. For example, you could have a
// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
template <class T>
class WeakPtrFactory {
public:
explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
}
WeakPtr<T> GetWeakPtr() {
return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
}
// Call this method to invalidate all existing weak pointers.
void InvalidateWeakPtrs() {
weak_reference_owner_.Invalidate();
}
// Call this method to determine if any weak pointers exist.
bool HasWeakPtrs() const {
return weak_reference_owner_.HasRefs();
}
private:
internal::WeakReferenceOwner weak_reference_owner_;
T* ptr_;
DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
};
} // namespace base
#endif // BASE_WEAK_PTR_H_
|