summaryrefslogtreecommitdiffstats
path: root/cc/animation/timing_function.cc
blob: 7fdb37fed962a48fa68a3e9b58252b694c50f4ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>
#include <cmath>

#include "base/logging.h"
#include "cc/animation/timing_function.h"

namespace cc {

namespace {

static const double kBezierEpsilon = 1e-7;
static const int MAX_STEPS = 30;

static double eval_bezier(double x1, double x2, double t) {
  const double x1_times_3 = 3.0 * x1;
  const double x2_times_3 = 3.0 * x2;
  const double h3 = x1_times_3;
  const double h1 = x1_times_3 - x2_times_3 + 1.0;
  const double h2 = x2_times_3 - 6.0 * x1;
  return t * (t * (t * h1 + h2) + h3);
}

static double bezier_interp(double x1,
                            double y1,
                            double x2,
                            double y2,
                            double x) {
  DCHECK_GE(1.0, x1);
  DCHECK_LE(0.0, x1);
  DCHECK_GE(1.0, x2);
  DCHECK_LE(0.0, x2);

  x1 = std::min(std::max(x1, 0.0), 1.0);
  x2 = std::min(std::max(x2, 0.0), 1.0);
  x = std::min(std::max(x, 0.0), 1.0);

  // Step 1. Find the t corresponding to the given x. I.e., we want t such that
  // eval_bezier(x1, x2, t) = x. There is a unique solution if x1 and x2 lie
  // within (0, 1).
  //
  // We're just going to do bisection for now (for simplicity), but we could
  // easily do some newton steps if this turns out to be a bottleneck.
  double t = 0.0;
  double step = 1.0;
  for (int i = 0; i < MAX_STEPS; ++i, step *= 0.5) {
    const double error = eval_bezier(x1, x2, t) - x;
    if (std::abs(error) < kBezierEpsilon)
      break;
    t += error > 0.0 ? -step : step;
  }

  // We should have terminated the above loop because we got close to x, not
  // because we exceeded MAX_STEPS. Do a DCHECK here to confirm.
  DCHECK_GT(kBezierEpsilon, std::abs(eval_bezier(x1, x2, t) - x));

  // Step 2. Return the interpolated y values at the t we computed above.
  return eval_bezier(y1, y2, t);
}

}  // namespace

TimingFunction::TimingFunction() {}

TimingFunction::~TimingFunction() {}

double TimingFunction::Duration() const {
  return 1.0;
}

scoped_ptr<CubicBezierTimingFunction> CubicBezierTimingFunction::Create(
    double x1, double y1, double x2, double y2) {
  return make_scoped_ptr(new CubicBezierTimingFunction(x1, y1, x2, y2));
}

CubicBezierTimingFunction::CubicBezierTimingFunction(double x1,
                                                     double y1,
                                                     double x2,
                                                     double y2)
    : x1_(x1), y1_(y1), x2_(x2), y2_(y2) {}

CubicBezierTimingFunction::~CubicBezierTimingFunction() {}

float CubicBezierTimingFunction::GetValue(double x) const {
  return static_cast<float>(bezier_interp(x1_, y1_, x2_, y2_, x));
}

scoped_ptr<AnimationCurve> CubicBezierTimingFunction::Clone() const {
  return make_scoped_ptr(
      new CubicBezierTimingFunction(*this)).PassAs<AnimationCurve>();
}

void CubicBezierTimingFunction::Range(float* min, float* max) const {
  *min = 0.f;
  *max = 1.f;
  if (0.f <= y1_ && y1_ < 1.f && 0.f <= y2_ && y2_ <= 1.f)
    return;

  // Represent the function's derivative in the form at^2 + bt + c.
  float a = 3.f * (y1_ - y2_) + 1.f;
  float b = 2.f * (y2_ - 2.f * y1_);
  float c = y1_;

  // Check if the derivative is constant.
  if (std::abs(a) < kBezierEpsilon &&
      std::abs(b) < kBezierEpsilon)
    return;

  // Zeros of the function's derivative.
  float t_1 = 0.f;
  float t_2 = 0.f;

  if (std::abs(a) < kBezierEpsilon) {
    // The function's derivative is linear.
    t_1 = -c / b;
  } else {
    // The function's derivative is a quadratic. We find the zeros of this
    // quadratic using the quadratic formula.
    float discriminant = b * b - 4 * a * c;
    if (discriminant < 0.f)
      return;
    float discriminant_sqrt = sqrt(discriminant);
    t_1 = (-b + discriminant_sqrt) / (2.f * a);
    t_2 = (-b - discriminant_sqrt) / (2.f * a);
  }

  float sol_1 = 0.f;
  float sol_2 = 0.f;

  if (0.f < t_1 && t_1 < 1.f)
    sol_1 = eval_bezier(y1_, y2_, t_1);

  if (0.f < t_2 && t_2 < 1.f)
    sol_2 = eval_bezier(y1_, y2_, t_2);

  *min = std::min(std::min(*min, sol_1), sol_2);
  *max = std::max(std::max(*max, sol_1), sol_2);
}

// These numbers come from
// http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
scoped_ptr<TimingFunction> EaseTimingFunction::Create() {
  return CubicBezierTimingFunction::Create(
      0.25, 0.1, 0.25, 1.0).PassAs<TimingFunction>();
}

scoped_ptr<TimingFunction> EaseInTimingFunction::Create() {
  return CubicBezierTimingFunction::Create(
      0.42, 0.0, 1.0, 1.0).PassAs<TimingFunction>();
}

scoped_ptr<TimingFunction> EaseOutTimingFunction::Create() {
  return CubicBezierTimingFunction::Create(
      0.0, 0.0, 0.58, 1.0).PassAs<TimingFunction>();
}

scoped_ptr<TimingFunction> EaseInOutTimingFunction::Create() {
  return CubicBezierTimingFunction::Create(
      0.42, 0.0, 0.58, 1).PassAs<TimingFunction>();
}

}  // namespace cc