1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Needed on Windows to get |M_PI| from <cmath>
#ifdef _WIN32
#define _USE_MATH_DEFINES
#endif
#include <algorithm>
#include <cmath>
#include <limits>
#include "base/logging.h"
#include "cc/animation/transform_operation.h"
#include "cc/animation/transform_operations.h"
#include "ui/gfx/box_f.h"
#include "ui/gfx/transform_util.h"
#include "ui/gfx/vector3d_f.h"
namespace {
const SkMScalar kAngleEpsilon = 1e-4f;
}
namespace cc {
bool TransformOperation::IsIdentity() const {
return matrix.IsIdentity();
}
static bool IsOperationIdentity(const TransformOperation* operation) {
return !operation || operation->IsIdentity();
}
static bool ShareSameAxis(const TransformOperation* from,
const TransformOperation* to,
SkMScalar* axis_x,
SkMScalar* axis_y,
SkMScalar* axis_z,
SkMScalar* angle_from) {
if (IsOperationIdentity(from) && IsOperationIdentity(to))
return false;
if (IsOperationIdentity(from) && !IsOperationIdentity(to)) {
*axis_x = to->rotate.axis.x;
*axis_y = to->rotate.axis.y;
*axis_z = to->rotate.axis.z;
*angle_from = 0;
return true;
}
if (!IsOperationIdentity(from) && IsOperationIdentity(to)) {
*axis_x = from->rotate.axis.x;
*axis_y = from->rotate.axis.y;
*axis_z = from->rotate.axis.z;
*angle_from = from->rotate.angle;
return true;
}
SkMScalar length_2 = from->rotate.axis.x * from->rotate.axis.x +
from->rotate.axis.y * from->rotate.axis.y +
from->rotate.axis.z * from->rotate.axis.z;
SkMScalar other_length_2 = to->rotate.axis.x * to->rotate.axis.x +
to->rotate.axis.y * to->rotate.axis.y +
to->rotate.axis.z * to->rotate.axis.z;
if (length_2 <= kAngleEpsilon || other_length_2 <= kAngleEpsilon)
return false;
SkMScalar dot = to->rotate.axis.x * from->rotate.axis.x +
to->rotate.axis.y * from->rotate.axis.y +
to->rotate.axis.z * from->rotate.axis.z;
SkMScalar error =
std::abs(SK_MScalar1 - (dot * dot) / (length_2 * other_length_2));
bool result = error < kAngleEpsilon;
if (result) {
*axis_x = to->rotate.axis.x;
*axis_y = to->rotate.axis.y;
*axis_z = to->rotate.axis.z;
// If the axes are pointing in opposite directions, we need to reverse
// the angle.
*angle_from = dot > 0 ? from->rotate.angle : -from->rotate.angle;
}
return result;
}
static SkMScalar BlendSkMScalars(SkMScalar from,
SkMScalar to,
SkMScalar progress) {
return from * (1 - progress) + to * progress;
}
bool TransformOperation::BlendTransformOperations(
const TransformOperation* from,
const TransformOperation* to,
SkMScalar progress,
gfx::Transform* result) {
if (IsOperationIdentity(from) && IsOperationIdentity(to))
return true;
TransformOperation::Type interpolation_type =
TransformOperation::TransformOperationIdentity;
if (IsOperationIdentity(to))
interpolation_type = from->type;
else
interpolation_type = to->type;
switch (interpolation_type) {
case TransformOperation::TransformOperationTranslate: {
SkMScalar from_x = IsOperationIdentity(from) ? 0 : from->translate.x;
SkMScalar from_y = IsOperationIdentity(from) ? 0 : from->translate.y;
SkMScalar from_z = IsOperationIdentity(from) ? 0 : from->translate.z;
SkMScalar to_x = IsOperationIdentity(to) ? 0 : to->translate.x;
SkMScalar to_y = IsOperationIdentity(to) ? 0 : to->translate.y;
SkMScalar to_z = IsOperationIdentity(to) ? 0 : to->translate.z;
result->Translate3d(BlendSkMScalars(from_x, to_x, progress),
BlendSkMScalars(from_y, to_y, progress),
BlendSkMScalars(from_z, to_z, progress));
break;
}
case TransformOperation::TransformOperationRotate: {
SkMScalar axis_x = 0;
SkMScalar axis_y = 0;
SkMScalar axis_z = 1;
SkMScalar from_angle = 0;
SkMScalar to_angle = IsOperationIdentity(to) ? 0 : to->rotate.angle;
if (ShareSameAxis(from, to, &axis_x, &axis_y, &axis_z, &from_angle)) {
result->RotateAbout(gfx::Vector3dF(axis_x, axis_y, axis_z),
BlendSkMScalars(from_angle, to_angle, progress));
} else {
gfx::Transform to_matrix;
if (!IsOperationIdentity(to))
to_matrix = to->matrix;
gfx::Transform from_matrix;
if (!IsOperationIdentity(from))
from_matrix = from->matrix;
*result = to_matrix;
if (!result->Blend(from_matrix, progress))
return false;
}
break;
}
case TransformOperation::TransformOperationScale: {
SkMScalar from_x = IsOperationIdentity(from) ? 1 : from->scale.x;
SkMScalar from_y = IsOperationIdentity(from) ? 1 : from->scale.y;
SkMScalar from_z = IsOperationIdentity(from) ? 1 : from->scale.z;
SkMScalar to_x = IsOperationIdentity(to) ? 1 : to->scale.x;
SkMScalar to_y = IsOperationIdentity(to) ? 1 : to->scale.y;
SkMScalar to_z = IsOperationIdentity(to) ? 1 : to->scale.z;
result->Scale3d(BlendSkMScalars(from_x, to_x, progress),
BlendSkMScalars(from_y, to_y, progress),
BlendSkMScalars(from_z, to_z, progress));
break;
}
case TransformOperation::TransformOperationSkew: {
SkMScalar from_x = IsOperationIdentity(from) ? 0 : from->skew.x;
SkMScalar from_y = IsOperationIdentity(from) ? 0 : from->skew.y;
SkMScalar to_x = IsOperationIdentity(to) ? 0 : to->skew.x;
SkMScalar to_y = IsOperationIdentity(to) ? 0 : to->skew.y;
result->SkewX(BlendSkMScalars(from_x, to_x, progress));
result->SkewY(BlendSkMScalars(from_y, to_y, progress));
break;
}
case TransformOperation::TransformOperationPerspective: {
SkMScalar from_perspective_depth =
IsOperationIdentity(from) ? std::numeric_limits<SkMScalar>::max()
: from->perspective_depth;
SkMScalar to_perspective_depth =
IsOperationIdentity(to) ? std::numeric_limits<SkMScalar>::max()
: to->perspective_depth;
if (from_perspective_depth == 0.f || to_perspective_depth == 0.f)
return false;
SkMScalar blended_perspective_depth = BlendSkMScalars(
1.f / from_perspective_depth, 1.f / to_perspective_depth, progress);
if (blended_perspective_depth == 0.f)
return false;
result->ApplyPerspectiveDepth(1.f / blended_perspective_depth);
break;
}
case TransformOperation::TransformOperationMatrix: {
gfx::Transform to_matrix;
if (!IsOperationIdentity(to))
to_matrix = to->matrix;
gfx::Transform from_matrix;
if (!IsOperationIdentity(from))
from_matrix = from->matrix;
*result = to_matrix;
if (!result->Blend(from_matrix, progress))
return false;
break;
}
case TransformOperation::TransformOperationIdentity:
// Do nothing.
break;
}
return true;
}
// If p = (px, py) is a point in the plane being rotated about (0, 0, nz), this
// function computes the angles we would have to rotate from p to get to
// (length(p), 0), (-length(p), 0), (0, length(p)), (0, -length(p)). If nz is
// negative, these angles will need to be reversed.
static void FindCandidatesInPlane(float px,
float py,
float nz,
double* candidates,
int* num_candidates) {
double phi = atan2(px, py);
*num_candidates = 4;
candidates[0] = phi;
for (int i = 1; i < *num_candidates; ++i)
candidates[i] = candidates[i - 1] + M_PI_2;
if (nz < 0.f) {
for (int i = 0; i < *num_candidates; ++i)
candidates[i] *= -1.f;
}
}
static float RadiansToDegrees(float radians) {
return (180.f * radians) / M_PI;
}
static float DegreesToRadians(float degrees) {
return (M_PI * degrees) / 180.f;
}
static void BoundingBoxForArc(const gfx::Point3F& point,
const TransformOperation* from,
const TransformOperation* to,
SkMScalar min_progress,
SkMScalar max_progress,
gfx::BoxF* box) {
const TransformOperation* exemplar = from ? from : to;
gfx::Vector3dF axis(exemplar->rotate.axis.x,
exemplar->rotate.axis.y,
exemplar->rotate.axis.z);
const bool x_is_zero = axis.x() == 0.f;
const bool y_is_zero = axis.y() == 0.f;
const bool z_is_zero = axis.z() == 0.f;
// We will have at most 6 angles to test (excluding from->angle and
// to->angle).
static const int kMaxNumCandidates = 6;
double candidates[kMaxNumCandidates];
int num_candidates = kMaxNumCandidates;
if (x_is_zero && y_is_zero && z_is_zero)
return;
SkMScalar from_angle = from ? from->rotate.angle : 0.f;
SkMScalar to_angle = to ? to->rotate.angle : 0.f;
// If the axes of rotation are pointing in opposite directions, we need to
// flip one of the angles. Note, if both |from| and |to| exist, then axis will
// correspond to |from|.
if (from && to) {
gfx::Vector3dF other_axis(
to->rotate.axis.x, to->rotate.axis.y, to->rotate.axis.z);
if (gfx::DotProduct(axis, other_axis) < 0.f)
to_angle *= -1.f;
}
float min_degrees =
SkMScalarToFloat(BlendSkMScalars(from_angle, to_angle, min_progress));
float max_degrees =
SkMScalarToFloat(BlendSkMScalars(from_angle, to_angle, max_progress));
if (max_degrees < min_degrees)
std::swap(min_degrees, max_degrees);
gfx::Transform from_transform;
from_transform.RotateAbout(axis, min_degrees);
gfx::Transform to_transform;
to_transform.RotateAbout(axis, max_degrees);
*box = gfx::BoxF();
gfx::Point3F point_rotated_from = point;
from_transform.TransformPoint(&point_rotated_from);
gfx::Point3F point_rotated_to = point;
to_transform.TransformPoint(&point_rotated_to);
box->set_origin(point_rotated_from);
box->ExpandTo(point_rotated_to);
if (x_is_zero && y_is_zero) {
FindCandidatesInPlane(
point.x(), point.y(), axis.z(), candidates, &num_candidates);
} else if (x_is_zero && z_is_zero) {
FindCandidatesInPlane(
point.z(), point.x(), axis.y(), candidates, &num_candidates);
} else if (y_is_zero && z_is_zero) {
FindCandidatesInPlane(
point.y(), point.z(), axis.x(), candidates, &num_candidates);
} else {
gfx::Vector3dF normal = axis;
normal.Scale(1.f / normal.Length());
// First, find center of rotation.
gfx::Point3F origin;
gfx::Vector3dF to_point = point - origin;
gfx::Point3F center =
origin + gfx::ScaleVector3d(normal, gfx::DotProduct(to_point, normal));
// Now we need to find two vectors in the plane of rotation. One pointing
// towards point and another, perpendicular vector in the plane.
gfx::Vector3dF v1 = point - center;
float v1_length = v1.Length();
if (v1_length == 0.f)
return;
v1.Scale(1.f / v1_length);
gfx::Vector3dF v2 = gfx::CrossProduct(normal, v1);
// v1 is the basis vector in the direction of the point.
// i.e. with a rotation of 0, v1 is our +x vector.
// v2 is a perpenticular basis vector of our plane (+y).
// Take the parametric equation of a circle.
// x = r*cos(t); y = r*sin(t);
// We can treat that as a circle on the plane v1xv2.
// From that we get the parametric equations for a circle on the
// plane in 3d space of:
// x(t) = r*cos(t)*v1.x + r*sin(t)*v2.x + cx
// y(t) = r*cos(t)*v1.y + r*sin(t)*v2.y + cy
// z(t) = r*cos(t)*v1.z + r*sin(t)*v2.z + cz
// Taking the derivative of (x, y, z) and solving for 0 gives us our
// maximum/minimum x, y, z values.
// x'(t) = r*cos(t)*v2.x - r*sin(t)*v1.x = 0
// tan(t) = v2.x/v1.x
// t = atan2(v2.x, v1.x) + n*M_PI;
candidates[0] = atan2(v2.x(), v1.x());
candidates[1] = candidates[0] + M_PI;
candidates[2] = atan2(v2.y(), v1.y());
candidates[3] = candidates[2] + M_PI;
candidates[4] = atan2(v2.z(), v1.z());
candidates[5] = candidates[4] + M_PI;
}
double min_radians = DegreesToRadians(min_degrees);
double max_radians = DegreesToRadians(max_degrees);
for (int i = 0; i < num_candidates; ++i) {
double radians = candidates[i];
while (radians < min_radians)
radians += 2.0 * M_PI;
while (radians > max_radians)
radians -= 2.0 * M_PI;
if (radians < min_radians)
continue;
gfx::Transform rotation;
rotation.RotateAbout(axis, RadiansToDegrees(radians));
gfx::Point3F rotated = point;
rotation.TransformPoint(&rotated);
box->ExpandTo(rotated);
}
}
bool TransformOperation::BlendedBoundsForBox(const gfx::BoxF& box,
const TransformOperation* from,
const TransformOperation* to,
SkMScalar min_progress,
SkMScalar max_progress,
gfx::BoxF* bounds) {
bool is_identity_from = IsOperationIdentity(from);
bool is_identity_to = IsOperationIdentity(to);
if (is_identity_from && is_identity_to) {
*bounds = box;
return true;
}
TransformOperation::Type interpolation_type =
TransformOperation::TransformOperationIdentity;
if (is_identity_to)
interpolation_type = from->type;
else
interpolation_type = to->type;
switch (interpolation_type) {
case TransformOperation::TransformOperationIdentity:
*bounds = box;
return true;
case TransformOperation::TransformOperationTranslate:
case TransformOperation::TransformOperationSkew:
case TransformOperation::TransformOperationPerspective:
case TransformOperation::TransformOperationScale: {
gfx::Transform from_transform;
gfx::Transform to_transform;
if (!BlendTransformOperations(from, to, min_progress, &from_transform) ||
!BlendTransformOperations(from, to, max_progress, &to_transform))
return false;
*bounds = box;
from_transform.TransformBox(bounds);
gfx::BoxF to_box = box;
to_transform.TransformBox(&to_box);
bounds->ExpandTo(to_box);
return true;
}
case TransformOperation::TransformOperationRotate: {
SkMScalar axis_x = 0;
SkMScalar axis_y = 0;
SkMScalar axis_z = 1;
SkMScalar from_angle = 0;
if (!ShareSameAxis(from, to, &axis_x, &axis_y, &axis_z, &from_angle))
return false;
bool first_point = true;
for (int i = 0; i < 8; ++i) {
gfx::Point3F corner = box.origin();
corner += gfx::Vector3dF(i & 1 ? box.width() : 0.f,
i & 2 ? box.height() : 0.f,
i & 4 ? box.depth() : 0.f);
gfx::BoxF box_for_arc;
BoundingBoxForArc(
corner, from, to, min_progress, max_progress, &box_for_arc);
if (first_point)
*bounds = box_for_arc;
else
bounds->Union(box_for_arc);
first_point = false;
}
return true;
}
case TransformOperation::TransformOperationMatrix:
return false;
}
NOTREACHED();
return false;
}
} // namespace cc
|