summaryrefslogtreecommitdiffstats
path: root/cc/base/math_util.cc
blob: 72b1e7f17728e4d0f9fc8784b96663728c9bf7c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/base/math_util.h"

#include <algorithm>
#include <cmath>
#include <limits>

#include "base/values.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/rect_f.h"
#include "ui/gfx/transform.h"
#include "ui/gfx/vector2d_f.h"

namespace cc {

const double MathUtil::kPiDouble = 3.14159265358979323846;
const float MathUtil::kPiFloat = 3.14159265358979323846f;

static HomogeneousCoordinate ProjectHomogeneousPoint(
    const gfx::Transform& transform,
    const gfx::PointF& p) {
  // In this case, the layer we are trying to project onto is perpendicular to
  // ray (point p and z-axis direction) that we are trying to project. This
  // happens when the layer is rotated so that it is infinitesimally thin, or
  // when it is co-planar with the camera origin -- i.e. when the layer is
  // invisible anyway.
  if (!transform.matrix().get(2, 2))
    return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);

  SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
             transform.matrix().get(2, 1) * p.y() +
             transform.matrix().get(2, 3)) /
             transform.matrix().get(2, 2);
  HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
  transform.matrix().mapMScalars(result.vec, result.vec);
  return result;
}

static HomogeneousCoordinate MapHomogeneousPoint(
    const gfx::Transform& transform,
    const gfx::Point3F& p) {
  HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
  transform.matrix().mapMScalars(result.vec, result.vec);
  return result;
}

static HomogeneousCoordinate ComputeClippedPointForEdge(
    const HomogeneousCoordinate& h1,
    const HomogeneousCoordinate& h2) {
  // Points h1 and h2 form a line in 4d, and any point on that line can be
  // represented as an interpolation between h1 and h2:
  //    p = (1-t) h1 + (t) h2
  //
  // We want to compute point p such that p.w == epsilon, where epsilon is a
  // small non-zero number. (but the smaller the number is, the higher the risk
  // of overflow)
  // To do this, we solve for t in the following equation:
  //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
  //
  // Once paramter t is known, the rest of p can be computed via
  //    p = (1-t) h1 + (t) h2.

  // Technically this is a special case of the following assertion, but its a
  // good idea to keep it an explicit sanity check here.
  DCHECK_NE(h2.w(), h1.w());
  // Exactly one of h1 or h2 (but not both) must be on the negative side of the
  // w plane when this is called.
  DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());

  // ...or any positive non-zero small epsilon
  SkMScalar w = 0.00001f;
  SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());

  SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
  SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
  SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();

  return HomogeneousCoordinate(x, y, z, w);
}

static inline void ExpandBoundsToIncludePoint(float* xmin,
                                              float* xmax,
                                              float* ymin,
                                              float* ymax,
                                              const gfx::PointF& p) {
  *xmin = std::min(p.x(), *xmin);
  *xmax = std::max(p.x(), *xmax);
  *ymin = std::min(p.y(), *ymin);
  *ymax = std::max(p.y(), *ymax);
}

static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
                                          gfx::PointF clipped_quad[8],
                                          int* num_vertices_in_clipped_quad) {
  clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
  (*num_vertices_in_clipped_quad)++;
}

gfx::Rect MathUtil::MapClippedRect(const gfx::Transform& transform,
                                   const gfx::Rect& src_rect) {
  return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
}

gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
                                    const gfx::RectF& src_rect) {
  if (transform.IsIdentityOrTranslation()) {
    return src_rect +
           gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
                          SkMScalarToFloat(transform.matrix().get(1, 3)));
  }

  // Apply the transform, but retain the result in homogeneous coordinates.

  SkMScalar quad[4 * 2];  // input: 4 x 2D points
  quad[0] = src_rect.x();
  quad[1] = src_rect.y();
  quad[2] = src_rect.right();
  quad[3] = src_rect.y();
  quad[4] = src_rect.right();
  quad[5] = src_rect.bottom();
  quad[6] = src_rect.x();
  quad[7] = src_rect.bottom();

  SkMScalar result[4 * 4];  // output: 4 x 4D homogeneous points
  transform.matrix().map2(quad, 4, result);

  HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
  HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
  HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
  HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
  return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
}

gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
                                        const gfx::RectF& src_rect) {
  if (transform.IsIdentityOrTranslation()) {
    return src_rect +
           gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
                          SkMScalarToFloat(transform.matrix().get(1, 3)));
  }

  // Perform the projection, but retain the result in homogeneous coordinates.
  gfx::QuadF q = gfx::QuadF(src_rect);
  HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
  HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
  HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
  HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());

  return ComputeEnclosingClippedRect(h1, h2, h3, h4);
}

void MathUtil::MapClippedQuad(const gfx::Transform& transform,
                              const gfx::QuadF& src_quad,
                              gfx::PointF clipped_quad[8],
                              int* num_vertices_in_clipped_quad) {
  HomogeneousCoordinate h1 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
  HomogeneousCoordinate h2 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
  HomogeneousCoordinate h3 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
  HomogeneousCoordinate h4 =
      MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));

  // The order of adding the vertices to the array is chosen so that
  // clockwise / counter-clockwise orientation is retained.

  *num_vertices_in_clipped_quad = 0;

  if (!h1.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  if (!h2.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  if (!h3.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  if (!h4.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
  }

  if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
    AddVertexToClippedQuad(
        ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
        clipped_quad,
        num_vertices_in_clipped_quad);
  }

  DCHECK_LE(*num_vertices_in_clipped_quad, 8);
}

gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
    const gfx::PointF vertices[],
    int num_vertices) {
  if (num_vertices < 2)
    return gfx::RectF();

  float xmin = std::numeric_limits<float>::max();
  float xmax = -std::numeric_limits<float>::max();
  float ymin = std::numeric_limits<float>::max();
  float ymax = -std::numeric_limits<float>::max();

  for (int i = 0; i < num_vertices; ++i)
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);

  return gfx::RectF(gfx::PointF(xmin, ymin),
                    gfx::SizeF(xmax - xmin, ymax - ymin));
}

gfx::RectF MathUtil::ComputeEnclosingClippedRect(
    const HomogeneousCoordinate& h1,
    const HomogeneousCoordinate& h2,
    const HomogeneousCoordinate& h3,
    const HomogeneousCoordinate& h4) {
  // This function performs clipping as necessary and computes the enclosing 2d
  // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
  // to avoid the overhead of storing an unknown number of clipped vertices.

  // If no vertices on the quad are clipped, then we can simply return the
  // enclosing rect directly.
  bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
                           h3.ShouldBeClipped() || h4.ShouldBeClipped();
  if (!something_clipped) {
    gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
                                        h2.CartesianPoint2d(),
                                        h3.CartesianPoint2d(),
                                        h4.CartesianPoint2d());
    return mapped_quad.BoundingBox();
  }

  bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
                            h3.ShouldBeClipped() && h4.ShouldBeClipped();
  if (everything_clipped)
    return gfx::RectF();

  float xmin = std::numeric_limits<float>::max();
  float xmax = -std::numeric_limits<float>::max();
  float ymin = std::numeric_limits<float>::max();
  float ymax = -std::numeric_limits<float>::max();

  if (!h1.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h1.CartesianPoint2d());

  if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h1, h2)
                                   .CartesianPoint2d());

  if (!h2.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h2.CartesianPoint2d());

  if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h2, h3)
                                   .CartesianPoint2d());

  if (!h3.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h3.CartesianPoint2d());

  if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h3, h4)
                                   .CartesianPoint2d());

  if (!h4.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
                               h4.CartesianPoint2d());

  if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
    ExpandBoundsToIncludePoint(&xmin,
                               &xmax,
                               &ymin,
                               &ymax,
                               ComputeClippedPointForEdge(h4, h1)
                                   .CartesianPoint2d());

  return gfx::RectF(gfx::PointF(xmin, ymin),
                    gfx::SizeF(xmax - xmin, ymax - ymin));
}

gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
                             const gfx::QuadF& q,
                             bool* clipped) {
  if (transform.IsIdentityOrTranslation()) {
    gfx::QuadF mapped_quad(q);
    mapped_quad +=
        gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
                       SkMScalarToFloat(transform.matrix().get(1, 3)));
    *clipped = false;
    return mapped_quad;
  }

  HomogeneousCoordinate h1 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
  HomogeneousCoordinate h2 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
  HomogeneousCoordinate h3 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
  HomogeneousCoordinate h4 =
      MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));

  *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
            h3.ShouldBeClipped() || h4.ShouldBeClipped();

  // Result will be invalid if clipped == true. But, compute it anyway just in
  // case, to emulate existing behavior.
  return gfx::QuadF(h1.CartesianPoint2d(),
                    h2.CartesianPoint2d(),
                    h3.CartesianPoint2d(),
                    h4.CartesianPoint2d());
}

gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
                               const gfx::PointF& p,
                               bool* clipped) {
  HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));

  if (h.w() > 0) {
    *clipped = false;
    return h.CartesianPoint2d();
  }

  // The cartesian coordinates will be invalid after dividing by w.
  *clipped = true;

  // Avoid dividing by w if w == 0.
  if (!h.w())
    return gfx::PointF();

  // This return value will be invalid because clipped == true, but (1) users of
  // this code should be ignoring the return value when clipped == true anyway,
  // and (2) this behavior is more consistent with existing behavior of WebKit
  // transforms if the user really does not ignore the return value.
  return h.CartesianPoint2d();
}

gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
                                const gfx::Point3F& p,
                                bool* clipped) {
  HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);

  if (h.w() > 0) {
    *clipped = false;
    return h.CartesianPoint3d();
  }

  // The cartesian coordinates will be invalid after dividing by w.
  *clipped = true;

  // Avoid dividing by w if w == 0.
  if (!h.w())
    return gfx::Point3F();

  // This return value will be invalid because clipped == true, but (1) users of
  // this code should be ignoring the return value when clipped == true anyway,
  // and (2) this behavior is more consistent with existing behavior of WebKit
  // transforms if the user really does not ignore the return value.
  return h.CartesianPoint3d();
}

gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
                                 const gfx::QuadF& q,
                                 bool* clipped) {
  gfx::QuadF projected_quad;
  bool clipped_point;
  projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
  *clipped = clipped_point;
  projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
  *clipped |= clipped_point;
  projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
  *clipped |= clipped_point;
  projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
  *clipped |= clipped_point;

  return projected_quad;
}

gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
                                   const gfx::PointF& p,
                                   bool* clipped) {
  HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);

  if (h.w() > 0) {
    // The cartesian coordinates will be valid in this case.
    *clipped = false;
    return h.CartesianPoint2d();
  }

  // The cartesian coordinates will be invalid after dividing by w.
  *clipped = true;

  // Avoid dividing by w if w == 0.
  if (!h.w())
    return gfx::PointF();

  // This return value will be invalid because clipped == true, but (1) users of
  // this code should be ignoring the return value when clipped == true anyway,
  // and (2) this behavior is more consistent with existing behavior of WebKit
  // transforms if the user really does not ignore the return value.
  return h.CartesianPoint2d();
}

gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
                                           const gfx::RectF& scale_outer_rect,
                                           const gfx::RectF& scale_inner_rect) {
  gfx::RectF output_inner_rect = input_outer_rect;
  float scale_rect_to_input_scale_x =
      scale_outer_rect.width() / input_outer_rect.width();
  float scale_rect_to_input_scale_y =
      scale_outer_rect.height() / input_outer_rect.height();

  gfx::Vector2dF top_left_diff =
      scale_inner_rect.origin() - scale_outer_rect.origin();
  gfx::Vector2dF bottom_right_diff =
      scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
  output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
                          top_left_diff.y() / scale_rect_to_input_scale_y,
                          -bottom_right_diff.x() / scale_rect_to_input_scale_x,
                          -bottom_right_diff.y() / scale_rect_to_input_scale_y);
  return output_inner_rect;
}

static inline float ScaleOnAxis(double a, double b, double c) {
  if (!b && !c)
    return a;
  if (!a && !c)
    return b;
  if (!a && !b)
    return c;

  // Do the sqrt as a double to not lose precision.
  return static_cast<float>(std::sqrt(a * a + b * b + c * c));
}

gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
    const gfx::Transform& transform,
    float fallback_value) {
  if (transform.HasPerspective())
    return gfx::Vector2dF(fallback_value, fallback_value);
  float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
                              transform.matrix().getDouble(1, 0),
                              transform.matrix().getDouble(2, 0));
  float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
                              transform.matrix().getDouble(1, 1),
                              transform.matrix().getDouble(2, 1));
  return gfx::Vector2dF(x_scale, y_scale);
}

float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
                                            const gfx::Vector2dF& v2) {
  double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
  // Clamp to compensate for rounding errors.
  dot_product = std::max(-1.0, std::min(1.0, dot_product));
  return static_cast<float>(Rad2Deg(std::acos(dot_product)));
}

gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
                                       const gfx::Vector2dF& destination) {
  float projected_length =
      gfx::DotProduct(source, destination) / destination.LengthSquared();
  return gfx::Vector2dF(projected_length * destination.x(),
                        projected_length * destination.y());
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
  scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
  res->SetDouble("width", s.width());
  res->SetDouble("height", s.height());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::SizeF& s) {
  scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
  res->SetDouble("width", s.width());
  res->SetDouble("height", s.height());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendInteger(r.x());
  res->AppendInteger(r.y());
  res->AppendInteger(r.width());
  res->AppendInteger(r.height());
  return res.PassAs<base::Value>();
}

bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
  const base::ListValue* value = NULL;
  if (!raw_value->GetAsList(&value))
    return false;

  if (value->GetSize() != 4)
    return false;

  int x, y, w, h;
  bool ok = true;
  ok &= value->GetInteger(0, &x);
  ok &= value->GetInteger(1, &y);
  ok &= value->GetInteger(2, &w);
  ok &= value->GetInteger(3, &h);
  if (!ok)
    return false;

  *out_rect = gfx::Rect(x, y, w, h);
  return true;
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendDouble(pt.x());
  res->AppendDouble(pt.y());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::QuadF& q) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendDouble(q.p1().x());
  res->AppendDouble(q.p1().y());
  res->AppendDouble(q.p2().x());
  res->AppendDouble(q.p2().y());
  res->AppendDouble(q.p3().x());
  res->AppendDouble(q.p3().y());
  res->AppendDouble(q.p4().x());
  res->AppendDouble(q.p4().y());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::RectF& rect) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendDouble(rect.x());
  res->AppendDouble(rect.y());
  res->AppendDouble(rect.width());
  res->AppendDouble(rect.height());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Transform& transform) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  const SkMatrix44& m = transform.matrix();
  for (int row = 0; row < 4; ++row) {
    for (int col = 0; col < 4; ++col)
      res->AppendDouble(m.getDouble(row, col));
  }
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValue(const gfx::BoxF& box) {
  scoped_ptr<base::ListValue> res(new base::ListValue());
  res->AppendInteger(box.x());
  res->AppendInteger(box.y());
  res->AppendInteger(box.z());
  res->AppendInteger(box.width());
  res->AppendInteger(box.height());
  res->AppendInteger(box.depth());
  return res.PassAs<base::Value>();
}

scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
  return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
      std::min(value, std::numeric_limits<double>::max())));
}

scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
  return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
      std::min(value, std::numeric_limits<float>::max())));
}

}  // namespace cc