summaryrefslogtreecommitdiffstats
path: root/cc/delay_based_time_source.cc
blob: 748b02bb232fb697f97c02d2bb88db013c038fa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "config.h"

#include "CCDelayBasedTimeSource.h"

#include "base/debug/trace_event.h"
#include "base/logging.h"
#include <algorithm>
#include <wtf/CurrentTime.h>
#include <wtf/MathExtras.h>

namespace cc {

namespace {

// doubleTickThreshold prevents ticks from running within the specified fraction of an interval.
// This helps account for jitter in the timebase as well as quick timer reactivation.
const double doubleTickThreshold = 0.25;

// intervalChangeThreshold is the fraction of the interval that will trigger an immediate interval change.
// phaseChangeThreshold is the fraction of the interval that will trigger an immediate phase change.
// If the changes are within the thresholds, the change will take place on the next tick.
// If either change is outside the thresholds, the next tick will be canceled and reissued immediately.
const double intervalChangeThreshold = 0.25;
const double phaseChangeThreshold = 0.25;

}  // namespace

scoped_refptr<CCDelayBasedTimeSource> CCDelayBasedTimeSource::create(base::TimeDelta interval, CCThread* thread)
{
    return make_scoped_refptr(new CCDelayBasedTimeSource(interval, thread));
}

CCDelayBasedTimeSource::CCDelayBasedTimeSource(base::TimeDelta interval, CCThread* thread)
    : m_client(0)
    , m_hasTickTarget(false)
    , m_currentParameters(interval, base::TimeTicks())
    , m_nextParameters(interval, base::TimeTicks())
    , m_state(STATE_INACTIVE)
    , m_timer(thread, this)
{
}

CCDelayBasedTimeSource::~CCDelayBasedTimeSource()
{
}

void CCDelayBasedTimeSource::setActive(bool active)
{
    TRACE_EVENT1("cc", "CCDelayBasedTimeSource::setActive", "active", active);
    if (!active) {
        m_state = STATE_INACTIVE;
        m_timer.stop();
        return;
    }

    if (m_state == STATE_STARTING || m_state == STATE_ACTIVE)
        return;

    if (!m_hasTickTarget) {
        // Becoming active the first time is deferred: we post a 0-delay task. When
        // it runs, we use that to establish the timebase, become truly active, and
        // fire the first tick.
        m_state = STATE_STARTING;
        m_timer.startOneShot(0);
        return;
    }

    m_state = STATE_ACTIVE;

    postNextTickTask(now());
}

bool CCDelayBasedTimeSource::active() const
{
    return m_state != STATE_INACTIVE;
}

base::TimeTicks CCDelayBasedTimeSource::lastTickTime()
{
    return m_lastTickTime;
}

base::TimeTicks CCDelayBasedTimeSource::nextTickTime()
{
    return active() ? m_currentParameters.tickTarget : base::TimeTicks();
}

void CCDelayBasedTimeSource::onTimerFired()
{
    DCHECK(m_state != STATE_INACTIVE);

    base::TimeTicks now = this->now();
    m_lastTickTime = now;

    if (m_state == STATE_STARTING) {
        setTimebaseAndInterval(now, m_currentParameters.interval);
        m_state = STATE_ACTIVE;
    }

    postNextTickTask(now);

    // Fire the tick
    if (m_client)
        m_client->onTimerTick();
}

void CCDelayBasedTimeSource::setClient(CCTimeSourceClient* client)
{
    m_client = client;
}

void CCDelayBasedTimeSource::setTimebaseAndInterval(base::TimeTicks timebase, base::TimeDelta interval)
{
    m_nextParameters.interval = interval;
    m_nextParameters.tickTarget = timebase;
    m_hasTickTarget = true;

    if (m_state != STATE_ACTIVE) {
        // If we aren't active, there's no need to reset the timer.
        return;
    }

    // If the change in interval is larger than the change threshold,
    // request an immediate reset.
    double intervalDelta = std::abs((interval - m_currentParameters.interval).InSecondsF());
    double intervalChange = intervalDelta / interval.InSecondsF();
    if (intervalChange > intervalChangeThreshold) {
        setActive(false);
        setActive(true);
        return;
    }

    // If the change in phase is greater than the change threshold in either
    // direction, request an immediate reset. This logic might result in a false
    // negative if there is a simultaneous small change in the interval and the
    // fmod just happens to return something near zero. Assuming the timebase
    // is very recent though, which it should be, we'll still be ok because the
    // old clock and new clock just happen to line up.
    double targetDelta = std::abs((timebase - m_currentParameters.tickTarget).InSecondsF());
    double phaseChange = fmod(targetDelta, interval.InSecondsF()) / interval.InSecondsF();
    if (phaseChange > phaseChangeThreshold && phaseChange < (1.0 - phaseChangeThreshold)) {
        setActive(false);
        setActive(true);
        return;
    }
}

base::TimeTicks CCDelayBasedTimeSource::now() const
{
    return base::TimeTicks::Now();
}

// This code tries to achieve an average tick rate as close to m_interval as possible.
// To do this, it has to deal with a few basic issues:
//   1. postDelayedTask can delay only at a millisecond granularity. So, 16.666 has to
//      posted as 16 or 17.
//   2. A delayed task may come back a bit late (a few ms), or really late (frames later)
//
// The basic idea with this scheduler here is to keep track of where we *want* to run in
// m_tickTarget. We update this with the exact interval.
//
// Then, when we post our task, we take the floor of (m_tickTarget and now()). If we
// started at now=0, and 60FPs (all times in milliseconds):
//      now=0    target=16.667   postDelayedTask(16)
//
// When our callback runs, we figure out how far off we were from that goal. Because of the flooring
// operation, and assuming our timer runs exactly when it should, this yields:
//      now=16   target=16.667
//
// Since we can't post a 0.667 ms task to get to now=16, we just treat this as a tick. Then,
// we update target to be 33.333. We now post another task based on the difference between our target
// and now:
//      now=16   tickTarget=16.667  newTarget=33.333   --> postDelayedTask(floor(33.333 - 16)) --> postDelayedTask(17)
//
// Over time, with no late tasks, this leads to us posting tasks like this:
//      now=0    tickTarget=0       newTarget=16.667   --> tick(), postDelayedTask(16)
//      now=16   tickTarget=16.667  newTarget=33.333   --> tick(), postDelayedTask(17)
//      now=33   tickTarget=33.333  newTarget=50.000   --> tick(), postDelayedTask(17)
//      now=50   tickTarget=50.000  newTarget=66.667   --> tick(), postDelayedTask(16)
//
// We treat delays in tasks differently depending on the amount of delay we encounter. Suppose we
// posted a task with a target=16.667:
//   Case 1: late but not unrecoverably-so
//      now=18 tickTarget=16.667
//
//   Case 2: so late we obviously missed the tick
//      now=25.0 tickTarget=16.667
//
// We treat the first case as a tick anyway, and assume the delay was
// unusual. Thus, we compute the newTarget based on the old timebase:
//      now=18   tickTarget=16.667  newTarget=33.333   --> tick(), postDelayedTask(floor(33.333-18)) --> postDelayedTask(15)
// This brings us back to 18+15 = 33, which was where we would have been if the task hadn't been late.
//
// For the really late delay, we we move to the next logical tick. The timebase is not reset.
//      now=37   tickTarget=16.667  newTarget=50.000  --> tick(), postDelayedTask(floor(50.000-37)) --> postDelayedTask(13)
base::TimeTicks CCDelayBasedTimeSource::nextTickTarget(base::TimeTicks now)
{
    base::TimeDelta newInterval = m_nextParameters.interval;
    int intervalsElapsed = static_cast<int>(floor((now - m_nextParameters.tickTarget).InSecondsF() / newInterval.InSecondsF()));
    base::TimeTicks lastEffectiveTick = m_nextParameters.tickTarget + newInterval * intervalsElapsed;
    base::TimeTicks newTickTarget = lastEffectiveTick + newInterval;
    DCHECK(newTickTarget > now);

    // Avoid double ticks when:
    // 1) Turning off the timer and turning it right back on.
    // 2) Jittery data is passed to setTimebaseAndInterval().
    if (newTickTarget - m_lastTickTime <= newInterval / static_cast<int>(1.0 / doubleTickThreshold))
        newTickTarget += newInterval;

    return newTickTarget;
}

void CCDelayBasedTimeSource::postNextTickTask(base::TimeTicks now)
{
    base::TimeTicks newTickTarget = nextTickTarget(now);

    // Post another task *before* the tick and update state
    base::TimeDelta delay = newTickTarget - now;
    DCHECK(delay.InMillisecondsF() <=
           m_nextParameters.interval.InMillisecondsF() * (1.0 + doubleTickThreshold));
    m_timer.startOneShot(delay.InSecondsF());

    m_nextParameters.tickTarget = newTickTarget;
    m_currentParameters = m_nextParameters;
}

}  // namespace cc