1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
|
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "config.h"
#include "cc/layer_tree_host_common.h"
#include "cc/layer.h"
#include "cc/layer_impl.h"
#include "cc/layer_iterator.h"
#include "cc/layer_sorter.h"
#include "cc/math_util.h"
#include "cc/render_surface.h"
#include "cc/render_surface_impl.h"
#include "ui/gfx/rect_conversions.h"
#include <algorithm>
#include <public/WebTransformationMatrix.h>
using WebKit::WebTransformationMatrix;
namespace cc {
ScrollAndScaleSet::ScrollAndScaleSet()
{
}
ScrollAndScaleSet::~ScrollAndScaleSet()
{
}
gfx::Rect LayerTreeHostCommon::calculateVisibleRect(const gfx::Rect& targetSurfaceRect, const gfx::Rect& layerBoundRect, const WebTransformationMatrix& transform)
{
// Is this layer fully contained within the target surface?
gfx::Rect layerInSurfaceSpace = MathUtil::mapClippedRect(transform, layerBoundRect);
if (targetSurfaceRect.Contains(layerInSurfaceSpace))
return layerBoundRect;
// If the layer doesn't fill up the entire surface, then find the part of
// the surface rect where the layer could be visible. This avoids trying to
// project surface rect points that are behind the projection point.
gfx::Rect minimalSurfaceRect = targetSurfaceRect;
minimalSurfaceRect.Intersect(layerInSurfaceSpace);
// Project the corners of the target surface rect into the layer space.
// This bounding rectangle may be larger than it needs to be (being
// axis-aligned), but is a reasonable filter on the space to consider.
// Non-invertible transforms will create an empty rect here.
const WebTransformationMatrix surfaceToLayer = transform.inverse();
gfx::Rect layerRect = gfx::ToEnclosingRect(MathUtil::projectClippedRect(surfaceToLayer, gfx::RectF(minimalSurfaceRect)));
layerRect.Intersect(layerBoundRect);
return layerRect;
}
template <typename LayerType>
static inline bool isRootLayer(LayerType* layer)
{
return !layer->parent();
}
template<typename LayerType>
static inline bool layerIsInExisting3DRenderingContext(LayerType* layer)
{
// According to current W3C spec on CSS transforms, a layer is part of an established
// 3d rendering context if its parent has transform-style of preserves-3d.
return layer->parent() && layer->parent()->preserves3D();
}
template<typename LayerType>
static bool isRootLayerOfNewRenderingContext(LayerType* layer)
{
// According to current W3C spec on CSS transforms (Section 6.1), a layer is the
// beginning of 3d rendering context if its parent does not have transform-style:
// preserve-3d, but this layer itself does.
if (layer->parent())
return !layer->parent()->preserves3D() && layer->preserves3D();
return layer->preserves3D();
}
template<typename LayerType>
static bool isLayerBackFaceVisible(LayerType* layer)
{
// The current W3C spec on CSS transforms says that backface visibility should be
// determined differently depending on whether the layer is in a "3d rendering
// context" or not. For Chromium code, we can determine whether we are in a 3d
// rendering context by checking if the parent preserves 3d.
if (layerIsInExisting3DRenderingContext(layer))
return layer->drawTransform().isBackFaceVisible();
// In this case, either the layer establishes a new 3d rendering context, or is not in
// a 3d rendering context at all.
return layer->transform().isBackFaceVisible();
}
template<typename LayerType>
static bool isSurfaceBackFaceVisible(LayerType* layer, const WebTransformationMatrix& drawTransform)
{
if (layerIsInExisting3DRenderingContext(layer))
return drawTransform.isBackFaceVisible();
if (isRootLayerOfNewRenderingContext(layer))
return layer->transform().isBackFaceVisible();
// If the renderSurface is not part of a new or existing rendering context, then the
// layers that contribute to this surface will decide back-face visibility for themselves.
return false;
}
template<typename LayerType>
static inline bool layerClipsSubtree(LayerType* layer)
{
return layer->masksToBounds() || layer->maskLayer();
}
template<typename LayerType>
static gfx::Rect calculateVisibleContentRect(LayerType* layer)
{
DCHECK(layer->renderTarget());
// Nothing is visible if the layer bounds are empty.
if (!layer->drawsContent() || layer->contentBounds().IsEmpty() || layer->drawableContentRect().IsEmpty())
return gfx::Rect();
gfx::Rect targetSurfaceClipRect;
// First, compute visible bounds in target surface space.
if (layer->renderTarget()->renderSurface()->clipRect().IsEmpty())
targetSurfaceClipRect = layer->drawableContentRect();
else {
// In this case the target surface does clip layers that contribute to it. So, we
// have convert the current surface's clipRect from its ancestor surface space to
// the current surface space.
targetSurfaceClipRect = gfx::ToEnclosingRect(MathUtil::projectClippedRect(layer->renderTarget()->renderSurface()->drawTransform().inverse(), layer->renderTarget()->renderSurface()->clipRect()));
targetSurfaceClipRect.Intersect(layer->drawableContentRect());
}
if (targetSurfaceClipRect.IsEmpty())
return gfx::Rect();
return LayerTreeHostCommon::calculateVisibleRect(targetSurfaceClipRect, gfx::Rect(gfx::Point(), layer->contentBounds()), layer->drawTransform());
}
static bool isScaleOrTranslation(const WebTransformationMatrix& m)
{
return !m.m12() && !m.m13() && !m.m14()
&& !m.m21() && !m.m23() && !m.m24()
&& !m.m31() && !m.m32() && !m.m43()
&& m.m44();
}
static inline bool transformToParentIsKnown(LayerImpl*)
{
return true;
}
static inline bool transformToParentIsKnown(Layer* layer)
{
return !layer->transformIsAnimating();
}
static inline bool transformToScreenIsKnown(LayerImpl*)
{
return true;
}
static inline bool transformToScreenIsKnown(Layer* layer)
{
return !layer->screenSpaceTransformIsAnimating();
}
template<typename LayerType>
static bool layerShouldBeSkipped(LayerType* layer)
{
// Layers can be skipped if any of these conditions are met.
// - does not draw content.
// - is transparent
// - has empty bounds
// - the layer is not double-sided, but its back face is visible.
//
// Some additional conditions need to be computed at a later point after the recursion is finished.
// - the intersection of render surface content and layer clipRect is empty
// - the visibleContentRect is empty
//
// Note, if the layer should not have been drawn due to being fully transparent,
// we would have skipped the entire subtree and never made it into this function,
// so it is safe to omit this check here.
if (!layer->drawsContent() || layer->bounds().IsEmpty())
return true;
LayerType* backfaceTestLayer = layer;
if (layer->useParentBackfaceVisibility()) {
DCHECK(layer->parent());
DCHECK(!layer->parent()->useParentBackfaceVisibility());
backfaceTestLayer = layer->parent();
}
// The layer should not be drawn if (1) it is not double-sided and (2) the back of the layer is known to be facing the screen.
if (!backfaceTestLayer->doubleSided() && transformToScreenIsKnown(backfaceTestLayer) && isLayerBackFaceVisible(backfaceTestLayer))
return true;
return false;
}
static inline bool subtreeShouldBeSkipped(LayerImpl* layer)
{
// The opacity of a layer always applies to its children (either implicitly
// via a render surface or explicitly if the parent preserves 3D), so the
// entire subtree can be skipped if this layer is fully transparent.
return !layer->opacity();
}
static inline bool subtreeShouldBeSkipped(Layer* layer)
{
// If the opacity is being animated then the opacity on the main thread is unreliable
// (since the impl thread may be using a different opacity), so it should not be trusted.
// In particular, it should not cause the subtree to be skipped.
return !layer->opacity() && !layer->opacityIsAnimating();
}
template<typename LayerType>
static bool subtreeShouldRenderToSeparateSurface(LayerType* layer, bool axisAlignedWithRespectToParent)
{
//
// A layer and its descendants should render onto a new RenderSurfaceImpl if any of these rules hold:
//
// The root layer should always have a renderSurface.
if (isRootLayer(layer))
return true;
// If we force it.
if (layer->forceRenderSurface())
return true;
// If the layer uses a mask.
if (layer->maskLayer())
return true;
// If the layer has a reflection.
if (layer->replicaLayer())
return true;
// If the layer uses a CSS filter.
if (!layer->filters().isEmpty() || !layer->backgroundFilters().isEmpty() || layer->filter())
return true;
// Cache this value, because otherwise it walks the entire subtree several times.
bool descendantDrawsContent = layer->descendantDrawsContent();
// If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but it is
// treated as a 3D object by its parent (i.e. parent does preserve-3d).
if (layerIsInExisting3DRenderingContext(layer) && !layer->preserves3D() && descendantDrawsContent)
return true;
// If the layer clips its descendants but it is not axis-aligned with respect to its parent.
if (layerClipsSubtree(layer) && !axisAlignedWithRespectToParent && descendantDrawsContent)
return true;
// If the layer has opacity != 1 and does not have a preserves-3d transform style.
if (layer->opacity() != 1 && !layer->preserves3D() && descendantDrawsContent)
return true;
return false;
}
WebTransformationMatrix computeScrollCompensationForThisLayer(LayerImpl* scrollingLayer, const WebTransformationMatrix& parentMatrix)
{
// For every layer that has non-zero scrollDelta, we have to compute a transform that can undo the
// scrollDelta translation. In particular, we want this matrix to premultiply a fixed-position layer's
// parentMatrix, so we design this transform in three steps as follows. The steps described here apply
// from right-to-left, so Step 1 would be the right-most matrix:
//
// Step 1. transform from target surface space to the exact space where scrollDelta is actually applied.
// -- this is inverse of the matrix in step 3
// Step 2. undo the scrollDelta
// -- this is just a translation by scrollDelta.
// Step 3. transform back to target surface space.
// -- this transform is the "partialLayerOriginTransform" = (parentMatrix * scale(layer->pageScaleDelta()));
//
// These steps create a matrix that both start and end in targetSurfaceSpace. So this matrix can
// pre-multiply any fixed-position layer's drawTransform to undo the scrollDeltas -- as long as
// that fixed position layer is fixed onto the same renderTarget as this scrollingLayer.
//
WebTransformationMatrix partialLayerOriginTransform = parentMatrix;
partialLayerOriginTransform.multiply(scrollingLayer->implTransform());
WebTransformationMatrix scrollCompensationForThisLayer = partialLayerOriginTransform; // Step 3
scrollCompensationForThisLayer.translate(scrollingLayer->scrollDelta().x(), scrollingLayer->scrollDelta().y()); // Step 2
scrollCompensationForThisLayer.multiply(partialLayerOriginTransform.inverse()); // Step 1
return scrollCompensationForThisLayer;
}
WebTransformationMatrix computeScrollCompensationMatrixForChildren(Layer* currentLayer, const WebTransformationMatrix& currentParentMatrix, const WebTransformationMatrix& currentScrollCompensation)
{
// The main thread (i.e. Layer) does not need to worry about scroll compensation.
// So we can just return an identity matrix here.
return WebTransformationMatrix();
}
WebTransformationMatrix computeScrollCompensationMatrixForChildren(LayerImpl* layer, const WebTransformationMatrix& parentMatrix, const WebTransformationMatrix& currentScrollCompensationMatrix)
{
// "Total scroll compensation" is the transform needed to cancel out all scrollDelta translations that
// occurred since the nearest container layer, even if there are renderSurfaces in-between.
//
// There are some edge cases to be aware of, that are not explicit in the code:
// - A layer that is both a fixed-position and container should not be its own container, instead, that means
// it is fixed to an ancestor, and is a container for any fixed-position descendants.
// - A layer that is a fixed-position container and has a renderSurface should behave the same as a container
// without a renderSurface, the renderSurface is irrelevant in that case.
// - A layer that does not have an explicit container is simply fixed to the viewport.
// (i.e. the root renderSurface.)
// - If the fixed-position layer has its own renderSurface, then the renderSurface is
// the one who gets fixed.
//
// This function needs to be called AFTER layers create their own renderSurfaces.
//
// Avoid the overheads (including stack allocation and matrix initialization/copy) if we know that the scroll compensation doesn't need to be reset or adjusted.
if (!layer->isContainerForFixedPositionLayers() && layer->scrollDelta().IsZero() && !layer->renderSurface())
return currentScrollCompensationMatrix;
// Start as identity matrix.
WebTransformationMatrix nextScrollCompensationMatrix;
// If this layer is not a container, then it inherits the existing scroll compensations.
if (!layer->isContainerForFixedPositionLayers())
nextScrollCompensationMatrix = currentScrollCompensationMatrix;
// If the current layer has a non-zero scrollDelta, then we should compute its local scrollCompensation
// and accumulate it to the nextScrollCompensationMatrix.
if (!layer->scrollDelta().IsZero()) {
WebTransformationMatrix scrollCompensationForThisLayer = computeScrollCompensationForThisLayer(layer, parentMatrix);
nextScrollCompensationMatrix.multiply(scrollCompensationForThisLayer);
}
// If the layer created its own renderSurface, we have to adjust nextScrollCompensationMatrix.
// The adjustment allows us to continue using the scrollCompensation on the next surface.
// Step 1 (right-most in the math): transform from the new surface to the original ancestor surface
// Step 2: apply the scroll compensation
// Step 3: transform back to the new surface.
if (layer->renderSurface() && !nextScrollCompensationMatrix.isIdentity())
nextScrollCompensationMatrix = layer->renderSurface()->drawTransform().inverse() * nextScrollCompensationMatrix * layer->renderSurface()->drawTransform();
return nextScrollCompensationMatrix;
}
// There is no contentsScale on impl thread.
static inline void updateLayerContentsScale(LayerImpl*, const WebTransformationMatrix&, float, float) { }
static inline void updateLayerContentsScale(Layer* layer, const WebTransformationMatrix& combinedTransform, float deviceScaleFactor, float pageScaleFactor)
{
float rasterScale = layer->rasterScale();
if (!rasterScale) {
rasterScale = 1;
if (layer->automaticallyComputeRasterScale()) {
gfx::Vector2dF transformScale = MathUtil::computeTransform2dScaleComponents(combinedTransform);
float combinedScale = std::max(transformScale.x(), transformScale.y());
rasterScale = combinedScale / deviceScaleFactor;
if (!layer->boundsContainPageScale())
rasterScale /= pageScaleFactor;
layer->setRasterScale(rasterScale);
}
}
float contentsScale = rasterScale * deviceScaleFactor;
if (!layer->boundsContainPageScale())
contentsScale *= pageScaleFactor;
layer->setContentsScale(contentsScale);
Layer* maskLayer = layer->maskLayer();
if (maskLayer)
maskLayer->setContentsScale(contentsScale);
Layer* replicaMaskLayer = layer->replicaLayer() ? layer->replicaLayer()->maskLayer() : 0;
if (replicaMaskLayer)
replicaMaskLayer->setContentsScale(contentsScale);
}
// Recursively walks the layer tree starting at the given node and computes all the
// necessary transformations, clipRects, render surfaces, etc.
template<typename LayerType, typename LayerList, typename RenderSurfaceType, typename LayerSorter>
static void calculateDrawTransformsInternal(LayerType* layer, const WebTransformationMatrix& parentMatrix,
const WebTransformationMatrix& fullHierarchyMatrix, const WebTransformationMatrix& currentScrollCompensationMatrix,
const gfx::Rect& clipRectFromAncestor, bool ancestorClipsSubtree,
RenderSurfaceType* nearestAncestorThatMovesPixels, LayerList& renderSurfaceLayerList, LayerList& layerList,
LayerSorter* layerSorter, int maxTextureSize, float deviceScaleFactor, float pageScaleFactor, gfx::Rect& drawableContentRectOfSubtree)
{
// This function computes the new matrix transformations recursively for this
// layer and all its descendants. It also computes the appropriate render surfaces.
// Some important points to remember:
//
// 0. Here, transforms are notated in Matrix x Vector order, and in words we describe what
// the transform does from left to right.
//
// 1. In our terminology, the "layer origin" refers to the top-left corner of a layer, and the
// positive Y-axis points downwards. This interpretation is valid because the orthographic
// projection applied at draw time flips the Y axis appropriately.
//
// 2. The anchor point, when given as a PointF object, is specified in "unit layer space",
// where the bounds of the layer map to [0, 1]. However, as a WebTransformationMatrix object,
// the transform to the anchor point is specified in "layer space", where the bounds
// of the layer map to [bounds.width(), bounds.height()].
//
// 3. Definition of various transforms used:
// M[parent] is the parent matrix, with respect to the nearest render surface, passed down recursively.
// M[root] is the full hierarchy, with respect to the root, passed down recursively.
// Tr[origin] is the translation matrix from the parent's origin to this layer's origin.
// Tr[origin2anchor] is the translation from the layer's origin to its anchor point
// Tr[origin2center] is the translation from the layer's origin to its center
// M[layer] is the layer's matrix (applied at the anchor point)
// M[sublayer] is the layer's sublayer transform (applied at the layer's center)
// S[layer2content] is the ratio of a layer's contentBounds() to its bounds().
//
// Some composite transforms can help in understanding the sequence of transforms:
// compositeLayerTransform = Tr[origin2anchor] * M[layer] * Tr[origin2anchor].inverse()
// compositeSublayerTransform = Tr[origin2center] * M[sublayer] * Tr[origin2center].inverse()
//
// In words, the layer transform is applied about the anchor point, and the sublayer transform is
// applied about the center of the layer.
//
// 4. When a layer (or render surface) is drawn, it is drawn into a "target render surface". Therefore the draw
// transform does not necessarily transform from screen space to local layer space. Instead, the draw transform
// is the transform between the "target render surface space" and local layer space. Note that render surfaces,
// except for the root, also draw themselves into a different target render surface, and so their draw
// transform and origin transforms are also described with respect to the target.
//
// Using these definitions, then:
//
// The draw transform for the layer is:
// M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * S[layer2content]
// = M[parent] * Tr[layer->position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
//
// Interpreting the math left-to-right, this transforms from the layer's render surface to the origin of the layer in content space.
//
// The screen space transform is:
// M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform * S[layer2content]
// = M[root] * Tr[layer->position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
//
// Interpreting the math left-to-right, this transforms from the root render surface's content space to the local layer's origin in layer space.
//
// The transform hierarchy that is passed on to children (i.e. the child's parentMatrix) is:
// M[parent]_for_child = M[parent] * Tr[origin] * compositeLayerTransform * compositeSublayerTransform
// = M[parent] * Tr[layer->position() + anchor] * M[layer] * Tr[anchor2origin] * compositeSublayerTransform
//
// and a similar matrix for the full hierarchy with respect to the root.
//
// Finally, note that the final matrix used by the shader for the layer is P * M[draw] * S . This final product
// is computed in drawTexturedQuad(), where:
// P is the projection matrix
// S is the scale adjustment (to scale up a canonical quad to the layer's size)
//
// When a render surface has a replica layer, that layer's transform is used to draw a second copy of the surface.
// Transforms named here are relative to the surface, unless they specify they are relative to the replica layer.
//
// We will denote a scale by device scale S[deviceScale]
//
// The render surface draw transform to its target surface origin is:
// M[surfaceDraw] = M[owningLayer->Draw]
//
// The render surface origin transform to its the root (screen space) origin is:
// M[surface2root] = M[owningLayer->screenspace] * S[deviceScale].inverse()
//
// The replica draw transform to its target surface origin is:
// M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * Tr[replica->position() + replica->anchor()] * Tr[replica] * Tr[origin2anchor].inverse() * S[contentsScale].inverse()
//
// The replica draw transform to the root (screen space) origin is:
// M[replica2root] = M[surface2root] * Tr[replica->position()] * Tr[replica] * Tr[origin2anchor].inverse()
//
// If we early-exit anywhere in this function, the drawableContentRect of this subtree should be considered empty.
drawableContentRectOfSubtree = gfx::Rect();
// The root layer cannot skip calcDrawTransforms.
if (!isRootLayer(layer) && subtreeShouldBeSkipped(layer))
return;
gfx::Rect clipRectForSubtree;
bool subtreeShouldBeClipped = false;
float drawOpacity = layer->opacity();
bool drawOpacityIsAnimating = layer->opacityIsAnimating();
if (layer->parent() && layer->parent()->preserves3D()) {
drawOpacity *= layer->parent()->drawOpacity();
drawOpacityIsAnimating |= layer->parent()->drawOpacityIsAnimating();
}
gfx::Size bounds = layer->bounds();
gfx::PointF anchorPoint = layer->anchorPoint();
gfx::PointF position = layer->position() - layer->scrollDelta();
WebTransformationMatrix layerLocalTransform;
// LT = Tr[origin] * Tr[origin2anchor]
layerLocalTransform.translate3d(position.x() + anchorPoint.x() * bounds.width(), position.y() + anchorPoint.y() * bounds.height(), layer->anchorPointZ());
// LT = Tr[origin] * Tr[origin2anchor] * M[layer]
layerLocalTransform.multiply(layer->transform());
// LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
layerLocalTransform.translate3d(-anchorPoint.x() * bounds.width(), -anchorPoint.y() * bounds.height(), -layer->anchorPointZ());
WebTransformationMatrix combinedTransform = parentMatrix;
combinedTransform.multiply(layerLocalTransform);
// The layer's contentsSize is determined from the combinedTransform, which then informs the
// layer's drawTransform.
updateLayerContentsScale(layer, combinedTransform, deviceScaleFactor, pageScaleFactor);
// If there is a tranformation from the impl thread then it should be at the
// start of the combinedTransform, but we don't want it to affect the contentsScale.
combinedTransform = layer->implTransform() * combinedTransform;
if (layer->fixedToContainerLayer()) {
// Special case: this layer is a composited fixed-position layer; we need to
// explicitly compensate for all ancestors' nonzero scrollDeltas to keep this layer
// fixed correctly.
combinedTransform = currentScrollCompensationMatrix * combinedTransform;
}
// The drawTransform that gets computed below is effectively the layer's drawTransform, unless
// the layer itself creates a renderSurface. In that case, the renderSurface re-parents the transforms.
WebTransformationMatrix drawTransform = combinedTransform;
if (!layer->contentBounds().IsEmpty() && !layer->bounds().IsEmpty()) {
// M[draw] = M[parent] * LT * S[layer2content]
drawTransform.scaleNonUniform(1.0 / layer->contentsScaleX(),
1.0 / layer->contentsScaleY());
}
// layerScreenSpaceTransform represents the transform between root layer's "screen space" and local content space.
WebTransformationMatrix layerScreenSpaceTransform = fullHierarchyMatrix;
if (!layer->preserves3D())
MathUtil::flattenTransformTo2d(layerScreenSpaceTransform);
layerScreenSpaceTransform.multiply(drawTransform);
layer->setScreenSpaceTransform(layerScreenSpaceTransform);
bool animatingTransformToTarget = layer->transformIsAnimating();
bool animatingTransformToScreen = animatingTransformToTarget;
if (layer->parent()) {
animatingTransformToTarget |= layer->parent()->drawTransformIsAnimating();
animatingTransformToScreen |= layer->parent()->screenSpaceTransformIsAnimating();
}
gfx::RectF contentRect(gfx::PointF(), layer->contentBounds());
// fullHierarchyMatrix is the matrix that transforms objects between screen space (except projection matrix) and the most recent RenderSurfaceImpl's space.
// nextHierarchyMatrix will only change if this layer uses a new RenderSurfaceImpl, otherwise remains the same.
WebTransformationMatrix nextHierarchyMatrix = fullHierarchyMatrix;
WebTransformationMatrix sublayerMatrix;
gfx::Vector2dF renderSurfaceSublayerScale = MathUtil::computeTransform2dScaleComponents(combinedTransform);
if (subtreeShouldRenderToSeparateSurface(layer, isScaleOrTranslation(combinedTransform))) {
// Check back-face visibility before continuing with this surface and its subtree
if (!layer->doubleSided() && transformToParentIsKnown(layer) && isSurfaceBackFaceVisible(layer, combinedTransform))
return;
if (!layer->renderSurface())
layer->createRenderSurface();
RenderSurfaceType* renderSurface = layer->renderSurface();
renderSurface->clearLayerLists();
// The owning layer's draw transform has a scale from content to layer space which we need to undo and
// replace with a scale from the surface's subtree into layer space.
if (!layer->contentBounds().IsEmpty() && !layer->bounds().IsEmpty())
drawTransform.scaleNonUniform(layer->contentsScaleX(), layer->contentsScaleY());
drawTransform.scaleNonUniform(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
renderSurface->setDrawTransform(drawTransform);
// The origin of the new surface is the upper left corner of the layer.
WebTransformationMatrix layerDrawTransform;
layerDrawTransform.scaleNonUniform(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
if (!layer->contentBounds().IsEmpty() && !layer->bounds().IsEmpty())
layerDrawTransform.scaleNonUniform(1.0 / layer->contentsScaleX(), 1.0 / layer->contentsScaleY());
layer->setDrawTransform(layerDrawTransform);
// Inside the surface's subtree, we scale everything to the owning layer's scale.
// The sublayer matrix transforms centered layer rects into target
// surface content space.
sublayerMatrix.makeIdentity();
sublayerMatrix.scaleNonUniform(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
// The opacity value is moved from the layer to its surface, so that the entire subtree properly inherits opacity.
renderSurface->setDrawOpacity(drawOpacity);
renderSurface->setDrawOpacityIsAnimating(drawOpacityIsAnimating);
layer->setDrawOpacity(1);
layer->setDrawOpacityIsAnimating(false);
renderSurface->setTargetSurfaceTransformsAreAnimating(animatingTransformToTarget);
renderSurface->setScreenSpaceTransformsAreAnimating(animatingTransformToScreen);
animatingTransformToTarget = false;
layer->setDrawTransformIsAnimating(animatingTransformToTarget);
layer->setScreenSpaceTransformIsAnimating(animatingTransformToScreen);
// Update the aggregate hierarchy matrix to include the transform of the
// newly created RenderSurfaceImpl.
nextHierarchyMatrix.multiply(renderSurface->drawTransform());
// The new renderSurface here will correctly clip the entire subtree. So, we do
// not need to continue propagating the clipping state further down the tree. This
// way, we can avoid transforming clipRects from ancestor target surface space to
// current target surface space that could cause more w < 0 headaches.
subtreeShouldBeClipped = false;
if (layer->maskLayer()) {
layer->maskLayer()->setRenderTarget(layer);
layer->maskLayer()->setVisibleContentRect(gfx::Rect(gfx::Point(), layer->contentBounds()));
}
if (layer->replicaLayer() && layer->replicaLayer()->maskLayer()) {
layer->replicaLayer()->maskLayer()->setRenderTarget(layer);
layer->replicaLayer()->maskLayer()->setVisibleContentRect(gfx::Rect(gfx::Point(), layer->contentBounds()));
}
// FIXME: make this smarter for the SkImageFilter case (check for
// pixel-moving filters)
if (layer->filters().hasFilterThatMovesPixels() || layer->filter())
nearestAncestorThatMovesPixels = renderSurface;
// The render surface clipRect is expressed in the space where this surface draws, i.e. the same space as clipRectFromAncestor.
if (ancestorClipsSubtree)
renderSurface->setClipRect(clipRectFromAncestor);
else
renderSurface->setClipRect(gfx::Rect());
renderSurface->setNearestAncestorThatMovesPixels(nearestAncestorThatMovesPixels);
renderSurfaceLayerList.push_back(layer);
} else {
DCHECK(layer->parent());
layer->setDrawTransform(drawTransform);
layer->setDrawTransformIsAnimating(animatingTransformToTarget);
layer->setScreenSpaceTransformIsAnimating(animatingTransformToScreen);
sublayerMatrix = combinedTransform;
layer->setDrawOpacity(drawOpacity);
layer->setDrawOpacityIsAnimating(drawOpacityIsAnimating);
layer->clearRenderSurface();
// Layers without renderSurfaces directly inherit the ancestor's clip status.
subtreeShouldBeClipped = ancestorClipsSubtree;
if (ancestorClipsSubtree)
clipRectForSubtree = clipRectFromAncestor;
// Layers that are not their own renderTarget will render into the target of their nearest ancestor.
layer->setRenderTarget(layer->parent()->renderTarget());
}
gfx::Rect rectInTargetSpace = ToEnclosingRect(MathUtil::mapClippedRect(layer->drawTransform(), contentRect));
if (layerClipsSubtree(layer)) {
subtreeShouldBeClipped = true;
if (ancestorClipsSubtree && !layer->renderSurface()) {
clipRectForSubtree = clipRectFromAncestor;
clipRectForSubtree.Intersect(rectInTargetSpace);
} else
clipRectForSubtree = rectInTargetSpace;
}
// Flatten to 2D if the layer doesn't preserve 3D.
if (!layer->preserves3D())
MathUtil::flattenTransformTo2d(sublayerMatrix);
// Apply the sublayer transform at the center of the layer.
sublayerMatrix.translate(0.5 * bounds.width(), 0.5 * bounds.height());
sublayerMatrix.multiply(layer->sublayerTransform());
sublayerMatrix.translate(-0.5 * bounds.width(), -0.5 * bounds.height());
LayerList& descendants = (layer->renderSurface() ? layer->renderSurface()->layerList() : layerList);
// Any layers that are appended after this point are in the layer's subtree and should be included in the sorting process.
unsigned sortingStartIndex = descendants.size();
if (!layerShouldBeSkipped(layer))
descendants.push_back(layer);
WebTransformationMatrix nextScrollCompensationMatrix = computeScrollCompensationMatrixForChildren(layer, parentMatrix, currentScrollCompensationMatrix);;
gfx::Rect accumulatedDrawableContentRectOfChildren;
for (size_t i = 0; i < layer->children().size(); ++i) {
LayerType* child = LayerTreeHostCommon::getChildAsRawPtr(layer->children(), i);
gfx::Rect drawableContentRectOfChildSubtree;
calculateDrawTransformsInternal<LayerType, LayerList, RenderSurfaceType, LayerSorter>(child, sublayerMatrix, nextHierarchyMatrix, nextScrollCompensationMatrix,
clipRectForSubtree, subtreeShouldBeClipped, nearestAncestorThatMovesPixels,
renderSurfaceLayerList, descendants, layerSorter, maxTextureSize, deviceScaleFactor, pageScaleFactor, drawableContentRectOfChildSubtree);
if (!drawableContentRectOfChildSubtree.IsEmpty()) {
accumulatedDrawableContentRectOfChildren.Union(drawableContentRectOfChildSubtree);
if (child->renderSurface())
descendants.push_back(child);
}
}
// Compute the total drawableContentRect for this subtree (the rect is in targetSurface space)
gfx::Rect localDrawableContentRectOfSubtree = accumulatedDrawableContentRectOfChildren;
if (layer->drawsContent())
localDrawableContentRectOfSubtree.Union(rectInTargetSpace);
if (subtreeShouldBeClipped)
localDrawableContentRectOfSubtree.Intersect(clipRectForSubtree);
// Compute the layer's drawable content rect (the rect is in targetSurface space)
gfx::Rect drawableContentRectOfLayer = rectInTargetSpace;
if (subtreeShouldBeClipped)
drawableContentRectOfLayer.Intersect(clipRectForSubtree);
layer->setDrawableContentRect(drawableContentRectOfLayer);
// Compute the layer's visible content rect (the rect is in content space)
gfx::Rect visibleContentRectOfLayer = calculateVisibleContentRect(layer);
layer->setVisibleContentRect(visibleContentRectOfLayer);
// Compute the remaining properties for the render surface, if the layer has one.
if (isRootLayer(layer)) {
// The root layer's surface's contentRect is always the entire viewport.
DCHECK(layer->renderSurface());
layer->renderSurface()->setContentRect(clipRectFromAncestor);
} else if (layer->renderSurface() && !isRootLayer(layer)) {
RenderSurfaceType* renderSurface = layer->renderSurface();
gfx::Rect clippedContentRect = localDrawableContentRectOfSubtree;
// Don't clip if the layer is reflected as the reflection shouldn't be
// clipped. If the layer is animating, then the surface's transform to
// its target is not known on the main thread, and we should not use it
// to clip.
if (!layer->replicaLayer() && transformToParentIsKnown(layer)) {
// Note, it is correct to use ancestorClipsSubtree here, because we are looking at this layer's renderSurface, not the layer itself.
if (ancestorClipsSubtree && !clippedContentRect.IsEmpty()) {
gfx::Rect surfaceClipRect = LayerTreeHostCommon::calculateVisibleRect(renderSurface->clipRect(), clippedContentRect, renderSurface->drawTransform());
clippedContentRect.Intersect(surfaceClipRect);
}
}
// The RenderSurfaceImpl backing texture cannot exceed the maximum supported
// texture size.
clippedContentRect.set_width(std::min(clippedContentRect.width(), maxTextureSize));
clippedContentRect.set_height(std::min(clippedContentRect.height(), maxTextureSize));
if (clippedContentRect.IsEmpty())
renderSurface->clearLayerLists();
renderSurface->setContentRect(clippedContentRect);
// The owning layer's screenSpaceTransform has a scale from content to layer space which we need to undo and
// replace with a scale from the surface's subtree into layer space.
WebTransformationMatrix screenSpaceTransform = layer->screenSpaceTransform();
if (!layer->contentBounds().IsEmpty() && !layer->bounds().IsEmpty())
screenSpaceTransform.scaleNonUniform(layer->contentsScaleX(), layer->contentsScaleY());
screenSpaceTransform.scaleNonUniform(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
renderSurface->setScreenSpaceTransform(screenSpaceTransform);
if (layer->replicaLayer()) {
WebTransformationMatrix surfaceOriginToReplicaOriginTransform;
surfaceOriginToReplicaOriginTransform.scaleNonUniform(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
surfaceOriginToReplicaOriginTransform.translate(layer->replicaLayer()->position().x() + layer->replicaLayer()->anchorPoint().x() * bounds.width(),
layer->replicaLayer()->position().y() + layer->replicaLayer()->anchorPoint().y() * bounds.height());
surfaceOriginToReplicaOriginTransform.multiply(layer->replicaLayer()->transform());
surfaceOriginToReplicaOriginTransform.translate(-layer->replicaLayer()->anchorPoint().x() * bounds.width(), -layer->replicaLayer()->anchorPoint().y() * bounds.height());
surfaceOriginToReplicaOriginTransform.scaleNonUniform(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
// Compute the replica's "originTransform" that maps from the replica's origin space to the target surface origin space.
WebTransformationMatrix replicaOriginTransform = layer->renderSurface()->drawTransform() * surfaceOriginToReplicaOriginTransform;
renderSurface->setReplicaDrawTransform(replicaOriginTransform);
// Compute the replica's "screenSpaceTransform" that maps from the replica's origin space to the screen's origin space.
WebTransformationMatrix replicaScreenSpaceTransform = layer->renderSurface()->screenSpaceTransform() * surfaceOriginToReplicaOriginTransform;
renderSurface->setReplicaScreenSpaceTransform(replicaScreenSpaceTransform);
}
// If a render surface has no layer list, then it and none of its children needed to get drawn.
if (!layer->renderSurface()->layerList().size()) {
// FIXME: Originally we asserted that this layer was already at the end of the
// list, and only needed to remove that layer. For now, we remove the
// entire subtree of surfaces to fix a crash bug. The root cause is
// https://bugs.webkit.org/show_bug.cgi?id=74147 and we should be able
// to put the original assert after fixing that.
while (renderSurfaceLayerList.back() != layer) {
renderSurfaceLayerList.back()->clearRenderSurface();
renderSurfaceLayerList.pop_back();
}
DCHECK(renderSurfaceLayerList.back() == layer);
renderSurfaceLayerList.pop_back();
layer->clearRenderSurface();
return;
}
}
// If neither this layer nor any of its children were added, early out.
if (sortingStartIndex == descendants.size())
return;
// If preserves-3d then sort all the descendants in 3D so that they can be
// drawn from back to front. If the preserves-3d property is also set on the parent then
// skip the sorting as the parent will sort all the descendants anyway.
if (descendants.size() && layer->preserves3D() && (!layer->parent() || !layer->parent()->preserves3D()))
sortLayers(descendants.begin() + sortingStartIndex, descendants.end(), layerSorter);
if (layer->renderSurface())
drawableContentRectOfSubtree = gfx::ToEnclosingRect(layer->renderSurface()->drawableContentRect());
else
drawableContentRectOfSubtree = localDrawableContentRectOfSubtree;
if (layer->hasContributingDelegatedRenderPasses())
layer->renderTarget()->renderSurface()->addContributingDelegatedRenderPassLayer(layer);
}
void LayerTreeHostCommon::calculateDrawTransforms(Layer* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int maxTextureSize, std::vector<scoped_refptr<Layer> >& renderSurfaceLayerList)
{
gfx::Rect totalDrawableContentRect;
WebTransformationMatrix identityMatrix;
WebTransformationMatrix deviceScaleTransform;
deviceScaleTransform.scale(deviceScaleFactor);
std::vector<scoped_refptr<Layer> > dummyLayerList;
// The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
bool subtreeShouldBeClipped = true;
gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
// This function should have received a root layer.
DCHECK(isRootLayer(rootLayer));
cc::calculateDrawTransformsInternal<Layer, std::vector<scoped_refptr<Layer> >, RenderSurface, void>(
rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
dummyLayerList, 0, maxTextureSize,
deviceScaleFactor, pageScaleFactor, totalDrawableContentRect);
// The dummy layer list should not have been used.
DCHECK(dummyLayerList.size() == 0);
// A root layer renderSurface should always exist after calculateDrawTransforms.
DCHECK(rootLayer->renderSurface());
}
void LayerTreeHostCommon::calculateDrawTransforms(LayerImpl* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, LayerSorter* layerSorter, int maxTextureSize, std::vector<LayerImpl*>& renderSurfaceLayerList)
{
gfx::Rect totalDrawableContentRect;
WebTransformationMatrix identityMatrix;
WebTransformationMatrix deviceScaleTransform;
deviceScaleTransform.scale(deviceScaleFactor);
std::vector<LayerImpl*> dummyLayerList;
// The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
bool subtreeShouldBeClipped = true;
gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
// This function should have received a root layer.
DCHECK(isRootLayer(rootLayer));
cc::calculateDrawTransformsInternal<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerSorter>(
rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
dummyLayerList, layerSorter, maxTextureSize,
deviceScaleFactor, pageScaleFactor, totalDrawableContentRect);
// The dummy layer list should not have been used.
DCHECK(dummyLayerList.size() == 0);
// A root layer renderSurface should always exist after calculateDrawTransforms.
DCHECK(rootLayer->renderSurface());
}
static bool pointHitsRect(const gfx::PointF& screenSpacePoint, const WebTransformationMatrix& localSpaceToScreenSpaceTransform, gfx::RectF localSpaceRect)
{
// If the transform is not invertible, then assume that this point doesn't hit this rect.
if (!localSpaceToScreenSpaceTransform.isInvertible())
return false;
// Transform the hit test point from screen space to the local space of the given rect.
bool clipped = false;
gfx::PointF hitTestPointInLocalSpace = MathUtil::projectPoint(localSpaceToScreenSpaceTransform.inverse(), screenSpacePoint, clipped);
// If projectPoint could not project to a valid value, then we assume that this point doesn't hit this rect.
if (clipped)
return false;
return localSpaceRect.Contains(hitTestPointInLocalSpace);
}
static bool pointIsClippedBySurfaceOrClipRect(const gfx::PointF& screenSpacePoint, LayerImpl* layer)
{
LayerImpl* currentLayer = layer;
// Walk up the layer tree and hit-test any renderSurfaces and any layer clipRects that are active.
while (currentLayer) {
if (currentLayer->renderSurface() && !pointHitsRect(screenSpacePoint, currentLayer->renderSurface()->screenSpaceTransform(), currentLayer->renderSurface()->contentRect()))
return true;
// Note that drawableContentRects are actually in targetSurface space, so the transform we
// have to provide is the target surface's screenSpaceTransform.
LayerImpl* renderTarget = currentLayer->renderTarget();
if (layerClipsSubtree(currentLayer) && !pointHitsRect(screenSpacePoint, renderTarget->renderSurface()->screenSpaceTransform(), currentLayer->drawableContentRect()))
return true;
currentLayer = currentLayer->parent();
}
// If we have finished walking all ancestors without having already exited, then the point is not clipped by any ancestors.
return false;
}
LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPoint(const gfx::PointF& screenSpacePoint, std::vector<LayerImpl*>& renderSurfaceLayerList)
{
LayerImpl* foundLayer = 0;
typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerIteratorActions::FrontToBack> LayerIteratorType;
LayerIteratorType end = LayerIteratorType::end(&renderSurfaceLayerList);
for (LayerIteratorType it = LayerIteratorType::begin(&renderSurfaceLayerList); it != end; ++it) {
// We don't want to consider renderSurfaces for hit testing.
if (!it.representsItself())
continue;
LayerImpl* currentLayer = (*it);
gfx::RectF contentRect(gfx::PointF(), currentLayer->contentBounds());
if (!pointHitsRect(screenSpacePoint, currentLayer->screenSpaceTransform(), contentRect))
continue;
// At this point, we think the point does hit the layer, but we need to walk up
// the parents to ensure that the layer was not clipped in such a way that the
// hit point actually should not hit the layer.
if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, currentLayer))
continue;
foundLayer = currentLayer;
break;
}
// This can potentially return 0, which means the screenSpacePoint did not successfully hit test any layers, not even the root layer.
return foundLayer;
}
} // namespace cc
|