1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
|
// Copyright 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layer_tree_host_common.h"
#include <algorithm>
#include "base/debug/trace_event.h"
#include "cc/heads_up_display_layer_impl.h"
#include "cc/layer.h"
#include "cc/layer_impl.h"
#include "cc/layer_iterator.h"
#include "cc/layer_sorter.h"
#include "cc/layer_tree_impl.h"
#include "cc/math_util.h"
#include "cc/render_surface.h"
#include "cc/render_surface_impl.h"
#include "ui/gfx/point_conversions.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/transform.h"
namespace cc {
ScrollAndScaleSet::ScrollAndScaleSet()
{
}
ScrollAndScaleSet::~ScrollAndScaleSet()
{
}
static void sortLayers(std::vector<scoped_refptr<Layer> >::iterator forst, std::vector<scoped_refptr<Layer> >::iterator end, void* layerSorter)
{
NOTREACHED();
}
static void sortLayers(std::vector<LayerImpl*>::iterator first, std::vector<LayerImpl*>::iterator end, LayerSorter* layerSorter)
{
DCHECK(layerSorter);
TRACE_EVENT0("cc", "layer_tree_host_common::sortLayers");
layerSorter->Sort(first, end);
}
inline gfx::Rect calculateVisibleRectWithCachedLayerRect(const gfx::Rect& targetSurfaceRect, const gfx::Rect& layerBoundRect, const gfx::Rect& layerRectInTargetSpace, const gfx::Transform& transform)
{
// Is this layer fully contained within the target surface?
if (targetSurfaceRect.Contains(layerRectInTargetSpace))
return layerBoundRect;
// If the layer doesn't fill up the entire surface, then find the part of
// the surface rect where the layer could be visible. This avoids trying to
// project surface rect points that are behind the projection point.
gfx::Rect minimalSurfaceRect = targetSurfaceRect;
minimalSurfaceRect.Intersect(layerRectInTargetSpace);
// Project the corners of the target surface rect into the layer space.
// This bounding rectangle may be larger than it needs to be (being
// axis-aligned), but is a reasonable filter on the space to consider.
// Non-invertible transforms will create an empty rect here.
gfx::Transform surfaceToLayer(gfx::Transform::kSkipInitialization);
if (!transform.GetInverse(&surfaceToLayer)) {
// TODO(shawnsingh): Either we need to handle uninvertible transforms
// here, or DCHECK that the transform is invertible.
}
gfx::Rect layerRect = gfx::ToEnclosingRect(MathUtil::projectClippedRect(surfaceToLayer, gfx::RectF(minimalSurfaceRect)));
layerRect.Intersect(layerBoundRect);
return layerRect;
}
gfx::Rect LayerTreeHostCommon::calculateVisibleRect(const gfx::Rect& targetSurfaceRect, const gfx::Rect& layerBoundRect, const gfx::Transform& transform)
{
gfx::Rect layerInSurfaceSpace = MathUtil::mapClippedRect(transform, layerBoundRect);
return calculateVisibleRectWithCachedLayerRect(targetSurfaceRect, layerBoundRect, layerInSurfaceSpace, transform);
}
template <typename LayerType>
static inline bool isRootLayer(LayerType* layer)
{
return !layer->parent();
}
template<typename LayerType>
static inline bool layerIsInExisting3DRenderingContext(LayerType* layer)
{
// According to current W3C spec on CSS transforms, a layer is part of an established
// 3d rendering context if its parent has transform-style of preserves-3d.
return layer->parent() && layer->parent()->preserves_3d();
}
template<typename LayerType>
static bool isRootLayerOfNewRenderingContext(LayerType* layer)
{
// According to current W3C spec on CSS transforms (Section 6.1), a layer is the
// beginning of 3d rendering context if its parent does not have transform-style:
// preserve-3d, but this layer itself does.
if (layer->parent())
return !layer->parent()->preserves_3d() && layer->preserves_3d();
return layer->preserves_3d();
}
template<typename LayerType>
static bool isLayerBackFaceVisible(LayerType* layer)
{
// The current W3C spec on CSS transforms says that backface visibility should be
// determined differently depending on whether the layer is in a "3d rendering
// context" or not. For Chromium code, we can determine whether we are in a 3d
// rendering context by checking if the parent preserves 3d.
if (layerIsInExisting3DRenderingContext(layer))
return layer->draw_transform().IsBackFaceVisible();
// In this case, either the layer establishes a new 3d rendering context, or is not in
// a 3d rendering context at all.
return layer->transform().IsBackFaceVisible();
}
template<typename LayerType>
static bool isSurfaceBackFaceVisible(LayerType* layer, const gfx::Transform& drawTransform)
{
if (layerIsInExisting3DRenderingContext(layer))
return drawTransform.IsBackFaceVisible();
if (isRootLayerOfNewRenderingContext(layer))
return layer->transform().IsBackFaceVisible();
// If the renderSurface is not part of a new or existing rendering context, then the
// layers that contribute to this surface will decide back-face visibility for themselves.
return false;
}
template<typename LayerType>
static inline bool layerClipsSubtree(LayerType* layer)
{
return layer->masks_to_bounds() || layer->mask_layer();
}
template<typename LayerType>
static gfx::Rect calculateVisibleContentRect(LayerType* layer, const gfx::Rect& ancestorClipRectInDescendantSurfaceSpace, const gfx::Rect& layerRectInTargetSpace)
{
DCHECK(layer->render_target());
// Nothing is visible if the layer bounds are empty.
if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || layer->drawable_content_rect().IsEmpty())
return gfx::Rect();
// Compute visible bounds in target surface space.
gfx::Rect visibleRectInTargetSurfaceSpace = layer->drawable_content_rect();
if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) {
// In this case the target surface does clip layers that contribute to
// it. So, we have to convert the current surface's clipRect from its
// ancestor surface space to the current (descendant) surface
// space. This conversion is done outside this function so that it can
// be cached instead of computing it redundantly for every layer.
visibleRectInTargetSurfaceSpace.Intersect(ancestorClipRectInDescendantSurfaceSpace);
}
if (visibleRectInTargetSurfaceSpace.IsEmpty())
return gfx::Rect();
return calculateVisibleRectWithCachedLayerRect(visibleRectInTargetSurfaceSpace, gfx::Rect(gfx::Point(), layer->content_bounds()), layerRectInTargetSpace, layer->draw_transform());
}
static inline bool transformToParentIsKnown(LayerImpl*)
{
return true;
}
static inline bool transformToParentIsKnown(Layer* layer)
{
return !layer->TransformIsAnimating();
}
static inline bool transformToScreenIsKnown(LayerImpl*)
{
return true;
}
static inline bool transformToScreenIsKnown(Layer* layer)
{
return !layer->screen_space_transform_is_animating();
}
template<typename LayerType>
static bool layerShouldBeSkipped(LayerType* layer)
{
// Layers can be skipped if any of these conditions are met.
// - does not draw content.
// - is transparent
// - has empty bounds
// - the layer is not double-sided, but its back face is visible.
//
// Some additional conditions need to be computed at a later point after the recursion is finished.
// - the intersection of render surface content and layer clipRect is empty
// - the visibleContentRect is empty
//
// Note, if the layer should not have been drawn due to being fully transparent,
// we would have skipped the entire subtree and never made it into this function,
// so it is safe to omit this check here.
if (!layer->DrawsContent() || layer->bounds().IsEmpty())
return true;
LayerType* backfaceTestLayer = layer;
if (layer->use_parent_backface_visibility()) {
DCHECK(layer->parent());
DCHECK(!layer->parent()->use_parent_backface_visibility());
backfaceTestLayer = layer->parent();
}
// The layer should not be drawn if (1) it is not double-sided and (2) the back of the layer is known to be facing the screen.
if (!backfaceTestLayer->double_sided() && transformToScreenIsKnown(backfaceTestLayer) && isLayerBackFaceVisible(backfaceTestLayer))
return true;
return false;
}
static inline bool subtreeShouldBeSkipped(LayerImpl* layer)
{
// The opacity of a layer always applies to its children (either implicitly
// via a render surface or explicitly if the parent preserves 3D), so the
// entire subtree can be skipped if this layer is fully transparent.
return !layer->opacity();
}
static inline bool subtreeShouldBeSkipped(Layer* layer)
{
// If the opacity is being animated then the opacity on the main thread is unreliable
// (since the impl thread may be using a different opacity), so it should not be trusted.
// In particular, it should not cause the subtree to be skipped.
return !layer->opacity() && !layer->OpacityIsAnimating();
}
// Called on each layer that could be drawn after all information from
// calcDrawProperties has been updated on that layer. May have some false
// positives (e.g. layers get this called on them but don't actually get drawn).
static inline void updateTilePrioritiesForLayer(LayerImpl* layer)
{
layer->UpdateTilePriorities();
// Mask layers don't get this call, so explicitly update them so they can
// kick off tile rasterization.
if (layer->mask_layer())
layer->mask_layer()->UpdateTilePriorities();
if (layer->replica_layer() && layer->replica_layer()->mask_layer())
layer->replica_layer()->mask_layer()->UpdateTilePriorities();
}
static inline void updateTilePrioritiesForLayer(Layer* layer)
{
}
template<typename LayerType>
static bool subtreeShouldRenderToSeparateSurface(LayerType* layer, bool axisAlignedWithRespectToParent)
{
//
// A layer and its descendants should render onto a new RenderSurfaceImpl if any of these rules hold:
//
// The root layer should always have a renderSurface.
if (isRootLayer(layer))
return true;
// If we force it.
if (layer->force_render_surface())
return true;
// If the layer uses a mask.
if (layer->mask_layer())
return true;
// If the layer has a reflection.
if (layer->replica_layer())
return true;
// If the layer uses a CSS filter.
if (!layer->filters().isEmpty() || !layer->background_filters().isEmpty() || layer->filter())
return true;
int numDescendantsThatDrawContent = layer->draw_properties().num_descendants_that_draw_content;
// If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but it is
// treated as a 3D object by its parent (i.e. parent does preserve-3d).
if (layerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() && numDescendantsThatDrawContent > 0) {
TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface flattening");
return true;
}
// If the layer clips its descendants but it is not axis-aligned with respect to its parent.
bool layerClipsExternalContent = layerClipsSubtree(layer) || layer->HasDelegatedContent();
if (layerClipsExternalContent && !axisAlignedWithRespectToParent && !layer->draw_properties().descendants_can_clip_selves)
{
TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface clipping");
return true;
}
// If the layer has some translucency and does not have a preserves-3d transform style.
// This condition only needs a render surface if two or more layers in the
// subtree overlap. But checking layer overlaps is unnecessarily costly so
// instead we conservatively create a surface whenever at least two layers
// draw content for this subtree.
bool atLeastTwoLayersInSubtreeDrawContent = numDescendantsThatDrawContent > 0 && (layer->DrawsContent() || numDescendantsThatDrawContent > 1);
if (layer->opacity() != 1.f && !layer->preserves_3d() && atLeastTwoLayersInSubtreeDrawContent) {
TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface opacity");
return true;
}
return false;
}
gfx::Transform computeScrollCompensationForThisLayer(LayerImpl* scrollingLayer, const gfx::Transform& parentMatrix)
{
// For every layer that has non-zero scrollDelta, we have to compute a transform that can undo the
// scrollDelta translation. In particular, we want this matrix to premultiply a fixed-position layer's
// parentMatrix, so we design this transform in three steps as follows. The steps described here apply
// from right-to-left, so Step 1 would be the right-most matrix:
//
// Step 1. transform from target surface space to the exact space where scrollDelta is actually applied.
// -- this is inverse of the matrix in step 3
// Step 2. undo the scrollDelta
// -- this is just a translation by scrollDelta.
// Step 3. transform back to target surface space.
// -- this transform is the "partialLayerOriginTransform" = (parentMatrix * scale(layer->pageScaleDelta()));
//
// These steps create a matrix that both start and end in targetSurfaceSpace. So this matrix can
// pre-multiply any fixed-position layer's drawTransform to undo the scrollDeltas -- as long as
// that fixed position layer is fixed onto the same renderTarget as this scrollingLayer.
//
gfx::Transform partialLayerOriginTransform = parentMatrix;
partialLayerOriginTransform.PreconcatTransform(scrollingLayer->impl_transform());
gfx::Transform scrollCompensationForThisLayer = partialLayerOriginTransform; // Step 3
scrollCompensationForThisLayer.Translate(scrollingLayer->scroll_delta().x(), scrollingLayer->scroll_delta().y()); // Step 2
gfx::Transform inversePartialLayerOriginTransform(gfx::Transform::kSkipInitialization);
if (!partialLayerOriginTransform.GetInverse(&inversePartialLayerOriginTransform)) {
// TODO(shawnsingh): Either we need to handle uninvertible transforms
// here, or DCHECK that the transform is invertible.
}
scrollCompensationForThisLayer.PreconcatTransform(inversePartialLayerOriginTransform); // Step 1
return scrollCompensationForThisLayer;
}
gfx::Transform computeScrollCompensationMatrixForChildren(Layer* currentLayer, const gfx::Transform& currentParentMatrix, const gfx::Transform& currentScrollCompensation)
{
// The main thread (i.e. Layer) does not need to worry about scroll compensation.
// So we can just return an identity matrix here.
return gfx::Transform();
}
gfx::Transform computeScrollCompensationMatrixForChildren(LayerImpl* layer, const gfx::Transform& parentMatrix, const gfx::Transform& currentScrollCompensationMatrix)
{
// "Total scroll compensation" is the transform needed to cancel out all scrollDelta translations that
// occurred since the nearest container layer, even if there are renderSurfaces in-between.
//
// There are some edge cases to be aware of, that are not explicit in the code:
// - A layer that is both a fixed-position and container should not be its own container, instead, that means
// it is fixed to an ancestor, and is a container for any fixed-position descendants.
// - A layer that is a fixed-position container and has a renderSurface should behave the same as a container
// without a renderSurface, the renderSurface is irrelevant in that case.
// - A layer that does not have an explicit container is simply fixed to the viewport.
// (i.e. the root renderSurface.)
// - If the fixed-position layer has its own renderSurface, then the renderSurface is
// the one who gets fixed.
//
// This function needs to be called AFTER layers create their own renderSurfaces.
//
// Avoid the overheads (including stack allocation and matrix initialization/copy) if we know that the scroll compensation doesn't need to be reset or adjusted.
if (!layer->is_container_for_fixed_position_layers() && layer->scroll_delta().IsZero() && !layer->render_surface())
return currentScrollCompensationMatrix;
// Start as identity matrix.
gfx::Transform nextScrollCompensationMatrix;
// If this layer is not a container, then it inherits the existing scroll compensations.
if (!layer->is_container_for_fixed_position_layers())
nextScrollCompensationMatrix = currentScrollCompensationMatrix;
// If the current layer has a non-zero scrollDelta, then we should compute its local scrollCompensation
// and accumulate it to the nextScrollCompensationMatrix.
if (!layer->scroll_delta().IsZero()) {
gfx::Transform scrollCompensationForThisLayer = computeScrollCompensationForThisLayer(layer, parentMatrix);
nextScrollCompensationMatrix.PreconcatTransform(scrollCompensationForThisLayer);
}
// If the layer created its own renderSurface, we have to adjust nextScrollCompensationMatrix.
// The adjustment allows us to continue using the scrollCompensation on the next surface.
// Step 1 (right-most in the math): transform from the new surface to the original ancestor surface
// Step 2: apply the scroll compensation
// Step 3: transform back to the new surface.
if (layer->render_surface() && !nextScrollCompensationMatrix.IsIdentity()) {
gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInitialization);
if (!layer->render_surface()->draw_transform().GetInverse(&inverseSurfaceDrawTransform)) {
// TODO(shawnsingh): Either we need to handle uninvertible transforms
// here, or DCHECK that the transform is invertible.
}
nextScrollCompensationMatrix = inverseSurfaceDrawTransform * nextScrollCompensationMatrix * layer->render_surface()->draw_transform();
}
return nextScrollCompensationMatrix;
}
template<typename LayerType>
static inline void CalculateContentsScale(LayerType* layer, float contentsScale, bool animating_transform_to_screen)
{
layer->CalculateContentsScale(
contentsScale,
animating_transform_to_screen,
&layer->draw_properties().contents_scale_x,
&layer->draw_properties().contents_scale_y,
&layer->draw_properties().content_bounds);
LayerType* maskLayer = layer->mask_layer();
if (maskLayer)
{
maskLayer->CalculateContentsScale(
contentsScale,
animating_transform_to_screen,
&maskLayer->draw_properties().contents_scale_x,
&maskLayer->draw_properties().contents_scale_y,
&maskLayer->draw_properties().content_bounds);
}
LayerType* replicaMaskLayer = layer->replica_layer() ? layer->replica_layer()->mask_layer() : 0;
if (replicaMaskLayer)
{
replicaMaskLayer->CalculateContentsScale(
contentsScale,
animating_transform_to_screen,
&replicaMaskLayer->draw_properties().contents_scale_x,
&replicaMaskLayer->draw_properties().contents_scale_y,
&replicaMaskLayer->draw_properties().content_bounds);
}
}
static inline void updateLayerContentsScale(LayerImpl* layer, const gfx::Transform& combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool animating_transform_to_screen)
{
gfx::Vector2dF transformScale = MathUtil::computeTransform2dScaleComponents(combinedTransform, deviceScaleFactor * pageScaleFactor);
float contentsScale = std::max(transformScale.x(), transformScale.y());
CalculateContentsScale(layer, contentsScale, animating_transform_to_screen);
}
static inline void updateLayerContentsScale(Layer* layer, const gfx::Transform& combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool animating_transform_to_screen)
{
float rasterScale = layer->raster_scale();
if (layer->automatically_compute_raster_scale()) {
gfx::Vector2dF transformScale = MathUtil::computeTransform2dScaleComponents(combinedTransform, 0.f);
float combinedScale = std::max(transformScale.x(), transformScale.y());
float idealRasterScale = combinedScale / deviceScaleFactor;
if (!layer->bounds_contain_page_scale())
idealRasterScale /= pageScaleFactor;
bool needToSetRasterScale = !rasterScale;
// If we've previously saved a rasterScale but the ideal changes, things are unpredictable and we should just use 1.
if (rasterScale && rasterScale != 1.f && idealRasterScale != rasterScale) {
idealRasterScale = 1.f;
needToSetRasterScale = true;
}
if (needToSetRasterScale) {
bool useAndSaveIdealScale = idealRasterScale >= 1.f && !animating_transform_to_screen;
if (useAndSaveIdealScale) {
rasterScale = idealRasterScale;
layer->SetRasterScale(rasterScale);
}
}
}
if (!rasterScale)
rasterScale = 1.f;
float contentsScale = rasterScale * deviceScaleFactor;
if (!layer->bounds_contain_page_scale())
contentsScale *= pageScaleFactor;
CalculateContentsScale(layer, contentsScale, animating_transform_to_screen);
}
template<typename LayerType, typename LayerList>
static inline void removeSurfaceForEarlyExit(LayerType* layerToRemove, LayerList& renderSurfaceLayerList)
{
DCHECK(layerToRemove->render_surface());
// Technically, we know that the layer we want to remove should be
// at the back of the renderSurfaceLayerList. However, we have had
// bugs before that added unnecessary layers here
// (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
// things to crash. So here we proactively remove any additional
// layers from the end of the list.
while (renderSurfaceLayerList.back() != layerToRemove) {
renderSurfaceLayerList.back()->ClearRenderSurface();
renderSurfaceLayerList.pop_back();
}
DCHECK(renderSurfaceLayerList.back() == layerToRemove);
renderSurfaceLayerList.pop_back();
layerToRemove->ClearRenderSurface();
}
// Recursively walks the layer tree to compute any information that is needed
// before doing the main recursion.
template<typename LayerType>
static void preCalculateMetaInformation(LayerType* layer)
{
if (layer->HasDelegatedContent()) {
// Layers with delegated content need to be treated as if they have as many children as the number
// of layers they own delegated quads for. Since we don't know this number right now, we choose
// one that acts like infinity for our purposes.
layer->draw_properties().num_descendants_that_draw_content = 1000;
layer->draw_properties().descendants_can_clip_selves = false;
return;
}
int numDescendantsThatDrawContent = 0;
bool descendantsCanClipSelves = true;
bool sublayerTransformPreventsClip = !layer->sublayer_transform().IsPositiveScaleOrTranslation();
for (size_t i = 0; i < layer->children().size(); ++i) {
LayerType* childLayer = layer->children()[i];
preCalculateMetaInformation<LayerType>(childLayer);
numDescendantsThatDrawContent += childLayer->DrawsContent() ? 1 : 0;
numDescendantsThatDrawContent += childLayer->draw_properties().num_descendants_that_draw_content;
if ((childLayer->DrawsContent() && !childLayer->CanClipSelf()) ||
!childLayer->draw_properties().descendants_can_clip_selves ||
sublayerTransformPreventsClip ||
!childLayer->transform().IsPositiveScaleOrTranslation())
descendantsCanClipSelves = false;
}
layer->draw_properties().num_descendants_that_draw_content = numDescendantsThatDrawContent;
layer->draw_properties().descendants_can_clip_selves = descendantsCanClipSelves;
}
static void roundTranslationComponents(gfx::Transform* transform)
{
transform->matrix().setDouble(0, 3, MathUtil::Round(transform->matrix().getDouble(0, 3)));
transform->matrix().setDouble(1, 3, MathUtil::Round(transform->matrix().getDouble(1, 3)));
}
// Recursively walks the layer tree starting at the given node and computes all the
// necessary transformations, clipRects, render surfaces, etc.
template<typename LayerType, typename LayerList, typename RenderSurfaceType>
static void calculateDrawPropertiesInternal(LayerType* layer, const gfx::Transform& parentMatrix,
const gfx::Transform& fullHierarchyMatrix, const gfx::Transform& currentScrollCompensationMatrix,
const gfx::Rect& clipRectFromAncestor, const gfx::Rect& clipRectFromAncestorInDescendantSpace, bool ancestorClipsSubtree,
RenderSurfaceType* nearestAncestorThatMovesPixels, LayerList& renderSurfaceLayerList, LayerList& layerList,
LayerSorter* layerSorter, int maxTextureSize, float deviceScaleFactor, float pageScaleFactor, bool subtreeCanUseLCDText,
gfx::Rect& drawableContentRectOfSubtree, bool updateTilePriorities)
{
// This function computes the new matrix transformations recursively for this
// layer and all its descendants. It also computes the appropriate render surfaces.
// Some important points to remember:
//
// 0. Here, transforms are notated in Matrix x Vector order, and in words we describe what
// the transform does from left to right.
//
// 1. In our terminology, the "layer origin" refers to the top-left corner of a layer, and the
// positive Y-axis points downwards. This interpretation is valid because the orthographic
// projection applied at draw time flips the Y axis appropriately.
//
// 2. The anchor point, when given as a PointF object, is specified in "unit layer space",
// where the bounds of the layer map to [0, 1]. However, as a Transform object,
// the transform to the anchor point is specified in "layer space", where the bounds
// of the layer map to [bounds.width(), bounds.height()].
//
// 3. Definition of various transforms used:
// M[parent] is the parent matrix, with respect to the nearest render surface, passed down recursively.
// M[root] is the full hierarchy, with respect to the root, passed down recursively.
// Tr[origin] is the translation matrix from the parent's origin to this layer's origin.
// Tr[origin2anchor] is the translation from the layer's origin to its anchor point
// Tr[origin2center] is the translation from the layer's origin to its center
// M[layer] is the layer's matrix (applied at the anchor point)
// M[sublayer] is the layer's sublayer transform (also applied at the layer's anchor point)
// S[layer2content] is the ratio of a layer's ContentBounds() to its Bounds().
//
// Some composite transforms can help in understanding the sequence of transforms:
// compositeLayerTransform = Tr[origin2anchor] * M[layer] * Tr[origin2anchor].inverse()
// compositeSublayerTransform = Tr[origin2anchor] * M[sublayer] * Tr[origin2anchor].inverse()
//
// 4. When a layer (or render surface) is drawn, it is drawn into a "target render surface". Therefore the draw
// transform does not necessarily transform from screen space to local layer space. Instead, the draw transform
// is the transform between the "target render surface space" and local layer space. Note that render surfaces,
// except for the root, also draw themselves into a different target render surface, and so their draw
// transform and origin transforms are also described with respect to the target.
//
// Using these definitions, then:
//
// The draw transform for the layer is:
// M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * S[layer2content]
// = M[parent] * Tr[layer->Position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
//
// Interpreting the math left-to-right, this transforms from the layer's render surface to the origin of the layer in content space.
//
// The screen space transform is:
// M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform * S[layer2content]
// = M[root] * Tr[layer->Position() + anchor] * M[layer] * Tr[anchor2origin] * S[layer2content]
//
// Interpreting the math left-to-right, this transforms from the root render surface's content space to the origin of the layer in content space.
//
// The transform hierarchy that is passed on to children (i.e. the child's parentMatrix) is:
// M[parent]_for_child = M[parent] * Tr[origin] * compositeLayerTransform * compositeSublayerTransform
// = M[parent] * Tr[layer->Position() + anchor] * M[layer] * Tr[anchor2origin] * compositeSublayerTransform
//
// and a similar matrix for the full hierarchy with respect to the root.
//
// Finally, note that the final matrix used by the shader for the layer is P * M[draw] * S . This final product
// is computed in drawTexturedQuad(), where:
// P is the projection matrix
// S is the scale adjustment (to scale up a canonical quad to the layer's size)
//
// When a render surface has a replica layer, that layer's transform is used to draw a second copy of the surface.
// gfx::Transforms named here are relative to the surface, unless they specify they are relative to the replica layer.
//
// We will denote a scale by device scale S[deviceScale]
//
// The render surface draw transform to its target surface origin is:
// M[surfaceDraw] = M[owningLayer->Draw]
//
// The render surface origin transform to its the root (screen space) origin is:
// M[surface2root] = M[owningLayer->screenspace] * S[deviceScale].inverse()
//
// The replica draw transform to its target surface origin is:
// M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * Tr[replica->Position() + replica->anchor()] * Tr[replica] * Tr[origin2anchor].inverse() * S[contentsScale].inverse()
//
// The replica draw transform to the root (screen space) origin is:
// M[replica2root] = M[surface2root] * Tr[replica->Position()] * Tr[replica] * Tr[origin2anchor].inverse()
//
// If we early-exit anywhere in this function, the drawableContentRect of this subtree should be considered empty.
drawableContentRectOfSubtree = gfx::Rect();
// The root layer cannot skip calcDrawProperties.
if (!isRootLayer(layer) && subtreeShouldBeSkipped(layer))
return;
// As this function proceeds, these are the properties for the current
// layer that actually get computed. To avoid unnecessary copies
// (particularly for matrices), we do computations directly on these values
// when possible.
DrawProperties<LayerType, RenderSurfaceType>& layerDrawProperties = layer->draw_properties();
gfx::Rect clipRectForSubtree;
bool subtreeShouldBeClipped = false;
// This value is cached on the stack so that we don't have to inverse-project
// the surface's clipRect redundantly for every layer. This value is the
// same as the surface's clipRect, except that instead of being described
// in the target surface space (i.e. the ancestor surface space), it is
// described in the current surface space.
gfx::Rect clipRectForSubtreeInDescendantSpace;
float accumulatedDrawOpacity = layer->opacity();
bool animatingOpacityToTarget = layer->OpacityIsAnimating();
bool animatingOpacityToScreen = animatingOpacityToTarget;
if (layer->parent()) {
accumulatedDrawOpacity *= layer->parent()->draw_opacity();
animatingOpacityToTarget |= layer->parent()->draw_opacity_is_animating();
animatingOpacityToScreen |= layer->parent()->screen_space_opacity_is_animating();
}
bool animatingTransformToTarget = layer->TransformIsAnimating();
bool animating_transform_to_screen = animatingTransformToTarget;
if (layer->parent()) {
animatingTransformToTarget |= layer->parent()->draw_transform_is_animating();
animating_transform_to_screen |= layer->parent()->screen_space_transform_is_animating();
}
gfx::Size bounds = layer->bounds();
gfx::PointF anchorPoint = layer->anchor_point();
gfx::PointF position = layer->position() - layer->scroll_delta();
gfx::Transform combinedTransform = parentMatrix;
if (!layer->transform().IsIdentity()) {
// LT = Tr[origin] * Tr[origin2anchor]
combinedTransform.Translate3d(position.x() + anchorPoint.x() * bounds.width(), position.y() + anchorPoint.y() * bounds.height(), layer->anchor_point_z());
// LT = Tr[origin] * Tr[origin2anchor] * M[layer]
combinedTransform.PreconcatTransform(layer->transform());
// LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
combinedTransform.Translate3d(-anchorPoint.x() * bounds.width(), -anchorPoint.y() * bounds.height(), -layer->anchor_point_z());
} else {
combinedTransform.Translate(position.x(), position.y());
}
// The layer's contentsSize is determined from the combinedTransform, which then informs the
// layer's drawTransform.
updateLayerContentsScale(layer, combinedTransform, deviceScaleFactor, pageScaleFactor, animating_transform_to_screen);
// If there is a transformation from the impl thread then it should be at
// the start of the combinedTransform, but we don't want it to affect the
// computation of contentsScale above.
// Note carefully: this is Concat, not Preconcat (implTransform * combinedTransform).
combinedTransform.ConcatTransform(layer->impl_transform());
if (!animatingTransformToTarget && layer->scrollable() && combinedTransform.IsScaleOrTranslation()) {
// Align the scrollable layer's position to screen space pixels to avoid blurriness.
// To avoid side-effects, do this only if the transform is simple.
roundTranslationComponents(&combinedTransform);
}
if (layer->fixed_to_container_layer()) {
// Special case: this layer is a composited fixed-position layer; we need to
// explicitly compensate for all ancestors' nonzero scrollDeltas to keep this layer
// fixed correctly.
// Note carefully: this is Concat, not Preconcat (currentScrollCompensation * combinedTransform).
combinedTransform.ConcatTransform(currentScrollCompensationMatrix);
}
// The drawTransform that gets computed below is effectively the layer's drawTransform, unless
// the layer itself creates a renderSurface. In that case, the renderSurface re-parents the transforms.
layerDrawProperties.target_space_transform = combinedTransform;
// M[draw] = M[parent] * LT * S[layer2content]
layerDrawProperties.target_space_transform.Scale(1.0 / layer->contents_scale_x(), 1.0 / layer->contents_scale_y());
// layerScreenSpaceTransform represents the transform between root layer's "screen space" and local content space.
layerDrawProperties.screen_space_transform = fullHierarchyMatrix;
if (!layer->preserves_3d())
layerDrawProperties.screen_space_transform.FlattenTo2d();
layerDrawProperties.screen_space_transform.PreconcatTransform(layerDrawProperties.target_space_transform);
// Adjusting text AA method during animation may cause repaints, which in-turn causes jank.
bool adjustTextAA = !animatingOpacityToScreen && !animating_transform_to_screen;
// To avoid color fringing, LCD text should only be used on opaque layers with just integral translation.
bool layerCanUseLCDText = subtreeCanUseLCDText &&
(accumulatedDrawOpacity == 1.0) &&
layerDrawProperties.target_space_transform.IsIdentityOrIntegerTranslation();
gfx::RectF contentRect(gfx::PointF(), layer->content_bounds());
// fullHierarchyMatrix is the matrix that transforms objects between screen space (except projection matrix) and the most recent RenderSurfaceImpl's space.
// nextHierarchyMatrix will only change if this layer uses a new RenderSurfaceImpl, otherwise remains the same.
gfx::Transform nextHierarchyMatrix = fullHierarchyMatrix;
gfx::Transform sublayerMatrix;
gfx::Vector2dF renderSurfaceSublayerScale = MathUtil::computeTransform2dScaleComponents(combinedTransform, deviceScaleFactor * pageScaleFactor);
if (subtreeShouldRenderToSeparateSurface(layer, combinedTransform.IsScaleOrTranslation())) {
// Check back-face visibility before continuing with this surface and its subtree
if (!layer->double_sided() && transformToParentIsKnown(layer) && isSurfaceBackFaceVisible(layer, combinedTransform))
return;
if (!layer->render_surface())
layer->CreateRenderSurface();
RenderSurfaceType* renderSurface = layer->render_surface();
renderSurface->ClearLayerLists();
// The owning layer's draw transform has a scale from content to layer
// space which we do not want; so here we use the combinedTransform
// instead of the drawTransform. However, we do need to add a different
// scale factor that accounts for the surface's pixel dimensions.
combinedTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
renderSurface->SetDrawTransform(combinedTransform);
// The owning layer's transform was re-parented by the surface, so the layer's new drawTransform
// only needs to scale the layer to surface space.
layerDrawProperties.target_space_transform.MakeIdentity();
layerDrawProperties.target_space_transform.Scale(renderSurfaceSublayerScale.x() / layer->contents_scale_x(), renderSurfaceSublayerScale.y() / layer->contents_scale_y());
// Inside the surface's subtree, we scale everything to the owning layer's scale.
// The sublayer matrix transforms layer rects into target
// surface content space.
DCHECK(sublayerMatrix.IsIdentity());
sublayerMatrix.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
// The opacity value is moved from the layer to its surface, so that the entire subtree properly inherits opacity.
renderSurface->SetDrawOpacity(accumulatedDrawOpacity);
renderSurface->SetDrawOpacityIsAnimating(animatingOpacityToTarget);
animatingOpacityToTarget = false;
layerDrawProperties.opacity = 1;
layerDrawProperties.opacity_is_animating = animatingOpacityToTarget;
layerDrawProperties.screen_space_opacity_is_animating = animatingOpacityToScreen;
renderSurface->SetTargetSurfaceTransformsAreAnimating(animatingTransformToTarget);
renderSurface->SetScreenSpaceTransformsAreAnimating(animating_transform_to_screen);
animatingTransformToTarget = false;
layerDrawProperties.target_space_transform_is_animating = animatingTransformToTarget;
layerDrawProperties.screen_space_transform_is_animating = animating_transform_to_screen;
// Update the aggregate hierarchy matrix to include the transform of the
// newly created RenderSurfaceImpl.
nextHierarchyMatrix.PreconcatTransform(renderSurface->draw_transform());
// The new renderSurface here will correctly clip the entire subtree. So, we do
// not need to continue propagating the clipping state further down the tree. This
// way, we can avoid transforming clipRects from ancestor target surface space to
// current target surface space that could cause more w < 0 headaches.
subtreeShouldBeClipped = false;
if (layer->mask_layer()) {
DrawProperties<LayerType, RenderSurfaceType>& maskLayerDrawProperties = layer->mask_layer()->draw_properties();
maskLayerDrawProperties.render_target = layer;
maskLayerDrawProperties.visible_content_rect = gfx::Rect(gfx::Point(), layer->content_bounds());
}
if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
DrawProperties<LayerType, RenderSurfaceType>& replicaMaskDrawProperties = layer->replica_layer()->mask_layer()->draw_properties();
replicaMaskDrawProperties.render_target = layer;
replicaMaskDrawProperties.visible_content_rect = gfx::Rect(gfx::Point(), layer->content_bounds());
}
// FIXME: make this smarter for the SkImageFilter case (check for
// pixel-moving filters)
if (layer->filters().hasFilterThatMovesPixels() || layer->filter())
nearestAncestorThatMovesPixels = renderSurface;
// The render surface clipRect is expressed in the space where this surface draws, i.e. the same space as clipRectFromAncestor.
renderSurface->SetIsClipped(ancestorClipsSubtree);
if (ancestorClipsSubtree) {
renderSurface->SetClipRect(clipRectFromAncestor);
gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInitialization);
if (!renderSurface->draw_transform().GetInverse(&inverseSurfaceDrawTransform)) {
// TODO(shawnsingh): Either we need to handle uninvertible transforms
// here, or DCHECK that the transform is invertible.
}
clipRectForSubtreeInDescendantSpace = gfx::ToEnclosingRect(MathUtil::projectClippedRect(inverseSurfaceDrawTransform, renderSurface->clip_rect()));
} else {
renderSurface->SetClipRect(gfx::Rect());
clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescendantSpace;
}
renderSurface->SetNearestAncestorThatMovesPixels(nearestAncestorThatMovesPixels);
// If the new render surface is drawn translucent or with a non-integral translation
// then the subtree that gets drawn on this render surface cannot use LCD text.
subtreeCanUseLCDText = layerCanUseLCDText;
renderSurfaceLayerList.push_back(layer);
} else {
DCHECK(layer->parent());
// Note: layerDrawProperties.target_space_transform is computed above,
// before this if-else statement.
layerDrawProperties.target_space_transform_is_animating = animatingTransformToTarget;
layerDrawProperties.screen_space_transform_is_animating = animating_transform_to_screen;
layerDrawProperties.opacity = accumulatedDrawOpacity;
layerDrawProperties.opacity_is_animating = animatingOpacityToTarget;
layerDrawProperties.screen_space_opacity_is_animating = animatingOpacityToScreen;
sublayerMatrix = combinedTransform;
layer->ClearRenderSurface();
// Layers without renderSurfaces directly inherit the ancestor's clip status.
subtreeShouldBeClipped = ancestorClipsSubtree;
if (ancestorClipsSubtree)
clipRectForSubtree = clipRectFromAncestor;
// The surface's cached clipRect value propagates regardless of what clipping goes on between layers here.
clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescendantSpace;
// Layers that are not their own renderTarget will render into the target of their nearest ancestor.
layerDrawProperties.render_target = layer->parent()->render_target();
}
if (adjustTextAA)
layerDrawProperties.can_use_lcd_text = layerCanUseLCDText;
gfx::Rect rectInTargetSpace = ToEnclosingRect(MathUtil::mapClippedRect(layer->draw_transform(), contentRect));
if (layerClipsSubtree(layer)) {
subtreeShouldBeClipped = true;
if (ancestorClipsSubtree && !layer->render_surface()) {
clipRectForSubtree = clipRectFromAncestor;
clipRectForSubtree.Intersect(rectInTargetSpace);
} else
clipRectForSubtree = rectInTargetSpace;
}
// Flatten to 2D if the layer doesn't preserve 3D.
if (!layer->preserves_3d())
sublayerMatrix.FlattenTo2d();
// Apply the sublayer transform at the anchor point of the layer.
if (!layer->sublayer_transform().IsIdentity()) {
sublayerMatrix.Translate(layer->anchor_point().x() * bounds.width(), layer->anchor_point().y() * bounds.height());
sublayerMatrix.PreconcatTransform(layer->sublayer_transform());
sublayerMatrix.Translate(-layer->anchor_point().x() * bounds.width(), -layer->anchor_point().y() * bounds.height());
}
LayerList& descendants = (layer->render_surface() ? layer->render_surface()->layer_list() : layerList);
// Any layers that are appended after this point are in the layer's subtree and should be included in the sorting process.
unsigned sortingStartIndex = descendants.size();
if (!layerShouldBeSkipped(layer))
descendants.push_back(layer);
gfx::Transform nextScrollCompensationMatrix = computeScrollCompensationMatrixForChildren(layer, parentMatrix, currentScrollCompensationMatrix);;
gfx::Rect accumulatedDrawableContentRectOfChildren;
for (size_t i = 0; i < layer->children().size(); ++i) {
LayerType* child = LayerTreeHostCommon::getChildAsRawPtr(layer->children(), i);
gfx::Rect drawableContentRectOfChildSubtree;
calculateDrawPropertiesInternal<LayerType, LayerList, RenderSurfaceType>(child, sublayerMatrix, nextHierarchyMatrix, nextScrollCompensationMatrix,
clipRectForSubtree, clipRectForSubtreeInDescendantSpace, subtreeShouldBeClipped, nearestAncestorThatMovesPixels,
renderSurfaceLayerList, descendants, layerSorter, maxTextureSize, deviceScaleFactor, pageScaleFactor,
subtreeCanUseLCDText, drawableContentRectOfChildSubtree, updateTilePriorities);
if (!drawableContentRectOfChildSubtree.IsEmpty()) {
accumulatedDrawableContentRectOfChildren.Union(drawableContentRectOfChildSubtree);
if (child->render_surface())
descendants.push_back(child);
}
}
if (layer->render_surface() && !isRootLayer(layer) && !layer->render_surface()->layer_list().size()) {
removeSurfaceForEarlyExit(layer, renderSurfaceLayerList);
return;
}
// Compute the total drawableContentRect for this subtree (the rect is in targetSurface space)
gfx::Rect localDrawableContentRectOfSubtree = accumulatedDrawableContentRectOfChildren;
if (layer->DrawsContent())
localDrawableContentRectOfSubtree.Union(rectInTargetSpace);
if (subtreeShouldBeClipped)
localDrawableContentRectOfSubtree.Intersect(clipRectForSubtree);
// Compute the layer's drawable content rect (the rect is in targetSurface space)
layerDrawProperties.drawable_content_rect = rectInTargetSpace;
if (subtreeShouldBeClipped)
layerDrawProperties.drawable_content_rect.Intersect(clipRectForSubtree);
// Tell the layer the rect that is clipped by. In theory we could use a
// tighter clipRect here (drawableContentRect), but that actually does not
// reduce how much would be drawn, and instead it would create unnecessary
// changes to scissor state affecting GPU performance.
layerDrawProperties.is_clipped = subtreeShouldBeClipped;
if (subtreeShouldBeClipped)
layerDrawProperties.clip_rect = clipRectForSubtree;
else {
// Initialize the clipRect to a safe value that will not clip the
// layer, just in case clipping is still accidentally used.
layerDrawProperties.clip_rect = rectInTargetSpace;
}
// Compute the layer's visible content rect (the rect is in content space)
layerDrawProperties.visible_content_rect = calculateVisibleContentRect(layer, clipRectForSubtreeInDescendantSpace, rectInTargetSpace);
// Compute the remaining properties for the render surface, if the layer has one.
if (isRootLayer(layer)) {
// The root layer's surface's contentRect is always the entire viewport.
DCHECK(layer->render_surface());
layer->render_surface()->SetContentRect(clipRectFromAncestor);
} else if (layer->render_surface() && !isRootLayer(layer)) {
RenderSurfaceType* renderSurface = layer->render_surface();
gfx::Rect clippedContentRect = localDrawableContentRectOfSubtree;
// Don't clip if the layer is reflected as the reflection shouldn't be
// clipped. If the layer is animating, then the surface's transform to
// its target is not known on the main thread, and we should not use it
// to clip.
if (!layer->replica_layer() && transformToParentIsKnown(layer)) {
// Note, it is correct to use ancestorClipsSubtree here, because we are looking at this layer's renderSurface, not the layer itself.
if (ancestorClipsSubtree && !clippedContentRect.IsEmpty()) {
gfx::Rect surfaceClipRect = LayerTreeHostCommon::calculateVisibleRect(renderSurface->clip_rect(), clippedContentRect, renderSurface->draw_transform());
clippedContentRect.Intersect(surfaceClipRect);
}
}
// The RenderSurfaceImpl backing texture cannot exceed the maximum supported
// texture size.
clippedContentRect.set_width(std::min(clippedContentRect.width(), maxTextureSize));
clippedContentRect.set_height(std::min(clippedContentRect.height(), maxTextureSize));
if (clippedContentRect.IsEmpty()) {
renderSurface->ClearLayerLists();
removeSurfaceForEarlyExit(layer, renderSurfaceLayerList);
return;
}
renderSurface->SetContentRect(clippedContentRect);
// The owning layer's screenSpaceTransform has a scale from content to layer space which we need to undo and
// replace with a scale from the surface's subtree into layer space.
gfx::Transform screenSpaceTransform = layer->screen_space_transform();
screenSpaceTransform.Scale(layer->contents_scale_x() / renderSurfaceSublayerScale.x(), layer->contents_scale_y() / renderSurfaceSublayerScale.y());
renderSurface->SetScreenSpaceTransform(screenSpaceTransform);
if (layer->replica_layer()) {
gfx::Transform surfaceOriginToReplicaOriginTransform;
surfaceOriginToReplicaOriginTransform.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublayerScale.y());
surfaceOriginToReplicaOriginTransform.Translate(layer->replica_layer()->position().x() + layer->replica_layer()->anchor_point().x() * bounds.width(),
layer->replica_layer()->position().y() + layer->replica_layer()->anchor_point().y() * bounds.height());
surfaceOriginToReplicaOriginTransform.PreconcatTransform(layer->replica_layer()->transform());
surfaceOriginToReplicaOriginTransform.Translate(-layer->replica_layer()->anchor_point().x() * bounds.width(), -layer->replica_layer()->anchor_point().y() * bounds.height());
surfaceOriginToReplicaOriginTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSurfaceSublayerScale.y());
// Compute the replica's "originTransform" that maps from the replica's origin space to the target surface origin space.
gfx::Transform replicaOriginTransform = layer->render_surface()->draw_transform() * surfaceOriginToReplicaOriginTransform;
renderSurface->SetReplicaDrawTransform(replicaOriginTransform);
// Compute the replica's "screenSpaceTransform" that maps from the replica's origin space to the screen's origin space.
gfx::Transform replicaScreenSpaceTransform = layer->render_surface()->screen_space_transform() * surfaceOriginToReplicaOriginTransform;
renderSurface->SetReplicaScreenSpaceTransform(replicaScreenSpaceTransform);
}
}
if (updateTilePriorities)
updateTilePrioritiesForLayer(layer);
// If neither this layer nor any of its children were added, early out.
if (sortingStartIndex == descendants.size())
return;
// If preserves-3d then sort all the descendants in 3D so that they can be
// drawn from back to front. If the preserves-3d property is also set on the parent then
// skip the sorting as the parent will sort all the descendants anyway.
if (layerSorter && descendants.size() && layer->preserves_3d() && (!layer->parent() || !layer->parent()->preserves_3d()))
sortLayers(descendants.begin() + sortingStartIndex, descendants.end(), layerSorter);
if (layer->render_surface())
drawableContentRectOfSubtree = gfx::ToEnclosingRect(layer->render_surface()->DrawableContentRect());
else
drawableContentRectOfSubtree = localDrawableContentRectOfSubtree;
if (layer->HasContributingDelegatedRenderPasses())
layer->render_target()->render_surface()->AddContributingDelegatedRenderPassLayer(layer);
}
void LayerTreeHostCommon::calculateDrawProperties(Layer* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int maxTextureSize, bool canUseLCDText, std::vector<scoped_refptr<Layer> >& renderSurfaceLayerList)
{
gfx::Rect totalDrawableContentRect;
gfx::Transform identityMatrix;
gfx::Transform deviceScaleTransform;
deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor);
std::vector<scoped_refptr<Layer> > dummyLayerList;
// The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
bool subtreeShouldBeClipped = true;
gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
bool updateTilePriorities = false;
// This function should have received a root layer.
DCHECK(isRootLayer(rootLayer));
preCalculateMetaInformation<Layer>(rootLayer);
calculateDrawPropertiesInternal<Layer, std::vector<scoped_refptr<Layer> >, RenderSurface>(
rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
dummyLayerList, 0, maxTextureSize,
deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentRect,
updateTilePriorities);
// The dummy layer list should not have been used.
DCHECK(dummyLayerList.size() == 0);
// A root layer renderSurface should always exist after calculateDrawProperties.
DCHECK(rootLayer->render_surface());
}
void LayerTreeHostCommon::calculateDrawProperties(LayerImpl* rootLayer, const gfx::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int maxTextureSize, bool canUseLCDText, std::vector<LayerImpl*>& renderSurfaceLayerList, bool updateTilePriorities)
{
gfx::Rect totalDrawableContentRect;
gfx::Transform identityMatrix;
gfx::Transform deviceScaleTransform;
deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor);
std::vector<LayerImpl*> dummyLayerList;
LayerSorter layerSorter;
// The root layer's renderSurface should receive the deviceViewport as the initial clipRect.
bool subtreeShouldBeClipped = true;
gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize);
// This function should have received a root layer.
DCHECK(isRootLayer(rootLayer));
preCalculateMetaInformation<LayerImpl>(rootLayer);
calculateDrawPropertiesInternal<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl>(
rootLayer, deviceScaleTransform, identityMatrix, identityMatrix,
deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, renderSurfaceLayerList,
dummyLayerList, &layerSorter, maxTextureSize,
deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentRect,
updateTilePriorities);
// The dummy layer list should not have been used.
DCHECK(dummyLayerList.size() == 0);
// A root layer renderSurface should always exist after calculateDrawProperties.
DCHECK(rootLayer->render_surface());
}
static bool pointHitsRect(const gfx::PointF& screenSpacePoint, const gfx::Transform& localSpaceToScreenSpaceTransform, gfx::RectF localSpaceRect)
{
// If the transform is not invertible, then assume that this point doesn't hit this rect.
gfx::Transform inverseLocalSpaceToScreenSpace(gfx::Transform::kSkipInitialization);
if (!localSpaceToScreenSpaceTransform.GetInverse(&inverseLocalSpaceToScreenSpace))
return false;
// Transform the hit test point from screen space to the local space of the given rect.
bool clipped = false;
gfx::PointF hitTestPointInLocalSpace = MathUtil::projectPoint(inverseLocalSpaceToScreenSpace, screenSpacePoint, clipped);
// If projectPoint could not project to a valid value, then we assume that this point doesn't hit this rect.
if (clipped)
return false;
return localSpaceRect.Contains(hitTestPointInLocalSpace);
}
static bool pointHitsRegion(gfx::PointF screenSpacePoint, const gfx::Transform& screenSpaceTransform, const Region& layerSpaceRegion, float layerContentScaleX, float layerContentScaleY)
{
// If the transform is not invertible, then assume that this point doesn't hit this region.
gfx::Transform inverseScreenSpaceTransform(gfx::Transform::kSkipInitialization);
if (!screenSpaceTransform.GetInverse(&inverseScreenSpaceTransform))
return false;
// Transform the hit test point from screen space to the local space of the given region.
bool clipped = false;
gfx::PointF hitTestPointInContentSpace = MathUtil::projectPoint(inverseScreenSpaceTransform, screenSpacePoint, clipped);
gfx::PointF hitTestPointInLayerSpace = gfx::ScalePoint(hitTestPointInContentSpace, 1 / layerContentScaleX, 1 / layerContentScaleY);
// If projectPoint could not project to a valid value, then we assume that this point doesn't hit this region.
if (clipped)
return false;
return layerSpaceRegion.Contains(gfx::ToRoundedPoint(hitTestPointInLayerSpace));
}
static bool pointIsClippedBySurfaceOrClipRect(const gfx::PointF& screenSpacePoint, LayerImpl* layer)
{
LayerImpl* currentLayer = layer;
// Walk up the layer tree and hit-test any renderSurfaces and any layer clipRects that are active.
while (currentLayer) {
if (currentLayer->render_surface() && !pointHitsRect(screenSpacePoint, currentLayer->render_surface()->screen_space_transform(), currentLayer->render_surface()->content_rect()))
return true;
// Note that drawableContentRects are actually in targetSurface space, so the transform we
// have to provide is the target surface's screenSpaceTransform.
LayerImpl* renderTarget = currentLayer->render_target();
if (layerClipsSubtree(currentLayer) && !pointHitsRect(screenSpacePoint, renderTarget->render_surface()->screen_space_transform(), currentLayer->drawable_content_rect()))
return true;
currentLayer = currentLayer->parent();
}
// If we have finished walking all ancestors without having already exited, then the point is not clipped by any ancestors.
return false;
}
LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPoint(const gfx::PointF& screenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceLayerList)
{
LayerImpl* foundLayer = 0;
typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerIteratorActions::FrontToBack> LayerIteratorType;
LayerIteratorType end = LayerIteratorType::end(&renderSurfaceLayerList);
for (LayerIteratorType it = LayerIteratorType::begin(&renderSurfaceLayerList); it != end; ++it) {
// We don't want to consider renderSurfaces for hit testing.
if (!it.representsItself())
continue;
LayerImpl* currentLayer = (*it);
gfx::RectF contentRect(gfx::PointF(), currentLayer->content_bounds());
if (!pointHitsRect(screenSpacePoint, currentLayer->screen_space_transform(), contentRect))
continue;
// At this point, we think the point does hit the layer, but we need to walk up
// the parents to ensure that the layer was not clipped in such a way that the
// hit point actually should not hit the layer.
if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, currentLayer))
continue;
// Skip the HUD layer.
if (currentLayer == currentLayer->layer_tree_impl()->hud_layer())
continue;
foundLayer = currentLayer;
break;
}
// This can potentially return 0, which means the screenSpacePoint did not successfully hit test any layers, not even the root layer.
return foundLayer;
}
LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPointInTouchHandlerRegion(const gfx::PointF& screenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceLayerList)
{
LayerImpl* foundLayer = 0;
typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl, LayerIteratorActions::FrontToBack> LayerIteratorType;
LayerIteratorType end = LayerIteratorType::end(&renderSurfaceLayerList);
for (LayerIteratorType it = LayerIteratorType::begin(&renderSurfaceLayerList); it != end; ++it) {
// We don't want to consider renderSurfaces for hit testing.
if (!it.representsItself())
continue;
LayerImpl* currentLayer = (*it);
if (!layerHasTouchEventHandlersAt(screenSpacePoint, currentLayer))
continue;
foundLayer = currentLayer;
break;
}
// This can potentially return 0, which means the screenSpacePoint did not successfully hit test any layers, not even the root layer.
return foundLayer;
}
bool LayerTreeHostCommon::layerHasTouchEventHandlersAt(const gfx::PointF& screenSpacePoint, LayerImpl* layerImpl) {
if (layerImpl->touch_event_handler_region().IsEmpty())
return false;
if (!pointHitsRegion(screenSpacePoint, layerImpl->screen_space_transform(), layerImpl->touch_event_handler_region(), layerImpl->contents_scale_x(), layerImpl->contents_scale_y()))
return false;;
// At this point, we think the point does hit the touch event handler region on the layer, but we need to walk up
// the parents to ensure that the layer was not clipped in such a way that the
// hit point actually should not hit the layer.
if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, layerImpl))
return false;
return true;
}
} // namespace cc
|