summaryrefslogtreecommitdiffstats
path: root/cc/math_util.cc
blob: 23fd588413004a28582100e174e477fe6bbcbaa6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "config.h"

#include "cc/math_util.h"

#include "FloatSize.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/rect_f.h"
#include <cmath>
#include <public/WebTransformationMatrix.h>

using WebKit::WebTransformationMatrix;

namespace cc {

static HomogeneousCoordinate projectHomogeneousPoint(const WebTransformationMatrix& transform, const gfx::PointF& p)
{
    // In this case, the layer we are trying to project onto is perpendicular to ray
    // (point p and z-axis direction) that we are trying to project. This happens when the
    // layer is rotated so that it is infinitesimally thin, or when it is co-planar with
    // the camera origin -- i.e. when the layer is invisible anyway.
    if (!transform.m33())
        return HomogeneousCoordinate(0, 0, 0, 1);

    double x = p.x();
    double y = p.y();
    double z = -(transform.m13() * x + transform.m23() * y + transform.m43()) / transform.m33();
    // implicit definition of w = 1;

    double outX = x * transform.m11() + y * transform.m21() + z * transform.m31() + transform.m41();
    double outY = x * transform.m12() + y * transform.m22() + z * transform.m32() + transform.m42();
    double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33() + transform.m43();
    double outW = x * transform.m14() + y * transform.m24() + z * transform.m34() + transform.m44();

    return HomogeneousCoordinate(outX, outY, outZ, outW);
}

static HomogeneousCoordinate mapHomogeneousPoint(const WebTransformationMatrix& transform, const gfx::Point3F& p)
{
    double x = p.x();
    double y = p.y();
    double z = p.z();
    // implicit definition of w = 1;

    double outX = x * transform.m11() + y * transform.m21() + z * transform.m31() + transform.m41();
    double outY = x * transform.m12() + y * transform.m22() + z * transform.m32() + transform.m42();
    double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33() + transform.m43();
    double outW = x * transform.m14() + y * transform.m24() + z * transform.m34() + transform.m44();

    return HomogeneousCoordinate(outX, outY, outZ, outW);
}

static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2)
{
    // Points h1 and h2 form a line in 4d, and any point on that line can be represented
    // as an interpolation between h1 and h2:
    //    p = (1-t) h1 + (t) h2
    //
    // We want to compute point p such that p.w == epsilon, where epsilon is a small
    // non-zero number. (but the smaller the number is, the higher the risk of overflow)
    // To do this, we solve for t in the following equation:
    //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
    //
    // Once paramter t is known, the rest of p can be computed via p = (1-t) h1 + (t) h2.

    // Technically this is a special case of the following assertion, but its a good idea to keep it an explicit sanity check here.
    DCHECK(h2.w != h1.w);
    // Exactly one of h1 or h2 (but not both) must be on the negative side of the w plane when this is called.
    DCHECK(h1.shouldBeClipped() ^ h2.shouldBeClipped());

    double w = 0.00001; // or any positive non-zero small epsilon

    double t = (w - h1.w) / (h2.w - h1.w);

    double x = (1-t) * h1.x + t * h2.x;
    double y = (1-t) * h1.y + t * h2.y;
    double z = (1-t) * h1.z + t * h2.z;

    return HomogeneousCoordinate(x, y, z, w);
}

static inline void expandBoundsToIncludePoint(float& xmin, float& xmax, float& ymin, float& ymax, const gfx::PointF& p)
{
    xmin = std::min(p.x(), xmin);
    xmax = std::max(p.x(), xmax);
    ymin = std::min(p.y(), ymin);
    ymax = std::max(p.y(), ymax);
}

static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad)
{
    clippedQuad[numVerticesInClippedQuad] = newVertex;
    numVerticesInClippedQuad++;
}

gfx::Rect MathUtil::mapClippedRect(const WebTransformationMatrix& transform, const gfx::Rect& srcRect)
{
    return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect)));
}

gfx::RectF MathUtil::mapClippedRect(const WebTransformationMatrix& transform, const gfx::RectF& srcRect)
{
    if (transform.isIdentityOrTranslation()) {
        gfx::RectF mappedRect(srcRect);
        mappedRect.Offset(static_cast<float>(transform.m41()), static_cast<float>(transform.m42()));
        return mappedRect;
    }

    // Apply the transform, but retain the result in homogeneous coordinates.
    gfx::QuadF q = gfx::QuadF(gfx::RectF(srcRect));
    HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
    HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
    HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
    HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4()));

    return computeEnclosingClippedRect(h1, h2, h3, h4);
}

gfx::RectF MathUtil::projectClippedRect(const WebTransformationMatrix& transform, const gfx::RectF& srcRect)
{
    // Perform the projection, but retain the result in homogeneous coordinates.
    gfx::QuadF q = gfx::QuadF(gfx::RectF(srcRect));
    HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1());
    HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2());
    HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3());
    HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4());

    return computeEnclosingClippedRect(h1, h2, h3, h4);
}

void MathUtil::mapClippedQuad(const WebTransformationMatrix& transform, const gfx::QuadF& srcQuad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad)
{
    HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p1()));
    HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p2()));
    HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p3()));
    HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p4()));

    // The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained.

    numVerticesInClippedQuad = 0;

    if (!h1.shouldBeClipped())
        addVertexToClippedQuad(h1.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h1, h2).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (!h2.shouldBeClipped())
        addVertexToClippedQuad(h2.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h2, h3).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (!h3.shouldBeClipped())
        addVertexToClippedQuad(h3.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h3, h4).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (!h4.shouldBeClipped())
        addVertexToClippedQuad(h4.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
        addVertexToClippedQuad(computeClippedPointForEdge(h4, h1).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);

    DCHECK(numVerticesInClippedQuad <= 8);
}

gfx::RectF MathUtil::computeEnclosingRectOfVertices(gfx::PointF vertices[], int numVertices)
{
    if (numVertices < 2)
        return gfx::RectF();

    float xmin = std::numeric_limits<float>::max();
    float xmax = -std::numeric_limits<float>::max();
    float ymin = std::numeric_limits<float>::max();
    float ymax = -std::numeric_limits<float>::max();

    for (int i = 0; i < numVertices; ++i)
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, vertices[i]);

    return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin));
}

gfx::RectF MathUtil::computeEnclosingClippedRect(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const HomogeneousCoordinate& h4)
{
    // This function performs clipping as necessary and computes the enclosing 2d
    // gfx::RectF of the vertices. Doing these two steps simultaneously allows us to avoid
    // the overhead of storing an unknown number of clipped vertices.

    // If no vertices on the quad are clipped, then we can simply return the enclosing rect directly.
    bool somethingClipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();
    if (!somethingClipped) {
        gfx::QuadF mappedQuad = gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
        return mappedQuad.BoundingBox();
    }

    bool everythingClipped = h1.shouldBeClipped() && h2.shouldBeClipped() && h3.shouldBeClipped() && h4.shouldBeClipped();
    if (everythingClipped)
        return gfx::RectF();


    float xmin = std::numeric_limits<float>::max();
    float xmax = -std::numeric_limits<float>::max();
    float ymin = std::numeric_limits<float>::max();
    float ymax = -std::numeric_limits<float>::max();

    if (!h1.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h1.cartesianPoint2d());

    if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h1, h2).cartesianPoint2d());

    if (!h2.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h2.cartesianPoint2d());

    if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h2, h3).cartesianPoint2d());

    if (!h3.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h3.cartesianPoint2d());

    if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h3, h4).cartesianPoint2d());

    if (!h4.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d());

    if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
        expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h4, h1).cartesianPoint2d());

    return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin));
}

gfx::QuadF MathUtil::mapQuad(const WebTransformationMatrix& transform, const gfx::QuadF& q, bool& clipped)
{
    if (transform.isIdentityOrTranslation()) {
        gfx::QuadF mappedQuad(q);
        mappedQuad += gfx::Vector2dF(static_cast<float>(transform.m41()), static_cast<float>(transform.m42()));
        clipped = false;
        return mappedQuad;
    }

    HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
    HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
    HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
    HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4()));

    clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();

    // Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior.
    return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
}

gfx::PointF MathUtil::mapPoint(const WebTransformationMatrix& transform, const gfx::PointF& p, bool& clipped)
{
    HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p));

    if (h.w > 0) {
        clipped = false;
        return h.cartesianPoint2d();
    }

    // The cartesian coordinates will be invalid after dividing by w.
    clipped = true;

    // Avoid dividing by w if w == 0.
    if (!h.w)
        return gfx::PointF();

    // This return value will be invalid because clipped == true, but (1) users of this
    // code should be ignoring the return value when clipped == true anyway, and (2) this
    // behavior is more consistent with existing behavior of WebKit transforms if the user
    // really does not ignore the return value.
    return h.cartesianPoint2d();
}

gfx::Point3F MathUtil::mapPoint(const WebTransformationMatrix& transform, const gfx::Point3F& p, bool& clipped)
{
    HomogeneousCoordinate h = mapHomogeneousPoint(transform, p);

    if (h.w > 0) {
        clipped = false;
        return h.cartesianPoint3d();
    }

    // The cartesian coordinates will be invalid after dividing by w.
    clipped = true;

    // Avoid dividing by w if w == 0.
    if (!h.w)
        return gfx::Point3F();

    // This return value will be invalid because clipped == true, but (1) users of this
    // code should be ignoring the return value when clipped == true anyway, and (2) this
    // behavior is more consistent with existing behavior of WebKit transforms if the user
    // really does not ignore the return value.
    return h.cartesianPoint3d();
}

gfx::QuadF MathUtil::projectQuad(const WebTransformationMatrix& transform, const gfx::QuadF& q, bool& clipped)
{
    gfx::QuadF projectedQuad;
    bool clippedPoint;
    projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint));
    clipped = clippedPoint;
    projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint));
    clipped |= clippedPoint;
    projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint));
    clipped |= clippedPoint;
    projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint));
    clipped |= clippedPoint;

    return projectedQuad;
}

gfx::PointF MathUtil::projectPoint(const WebTransformationMatrix& transform, const gfx::PointF& p, bool& clipped)
{
    HomogeneousCoordinate h = projectHomogeneousPoint(transform, p);

    if (h.w > 0) {
        // The cartesian coordinates will be valid in this case.
        clipped = false;
        return h.cartesianPoint2d();
    }

    // The cartesian coordinates will be invalid after dividing by w.
    clipped = true;

    // Avoid dividing by w if w == 0.
    if (!h.w)
        return gfx::PointF();

    // This return value will be invalid because clipped == true, but (1) users of this
    // code should be ignoring the return value when clipped == true anyway, and (2) this
    // behavior is more consistent with existing behavior of WebKit transforms if the user
    // really does not ignore the return value.
    return h.cartesianPoint2d();
}

void MathUtil::flattenTransformTo2d(WebTransformationMatrix& transform)
{
    // Set both the 3rd row and 3rd column to (0, 0, 1, 0).
    //
    // One useful interpretation of doing this operation:
    //  - For x and y values, the new transform behaves effectively like an orthographic
    //    projection was added to the matrix sequence.
    //  - For z values, the new transform overrides any effect that the transform had on
    //    z, and instead it preserves the z value for any points that are transformed.
    //  - Because of linearity of transforms, this flattened transform also preserves the
    //    effect that any subsequent (post-multiplied) transforms would have on z values.
    //
    transform.setM13(0);
    transform.setM23(0);
    transform.setM31(0);
    transform.setM32(0);
    transform.setM33(1);
    transform.setM34(0);
    transform.setM43(0);
}

static inline float scaleOnAxis(double a, double b, double c)
{
    return std::sqrt(a * a + b * b + c * c);
}

gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const WebTransformationMatrix& transform)
{
    if (transform.hasPerspective())
        return gfx::Vector2dF(1, 1);
    float xScale = scaleOnAxis(transform.m11(), transform.m12(), transform.m13());
    float yScale = scaleOnAxis(transform.m21(), transform.m22(), transform.m23());
    return gfx::Vector2dF(xScale, yScale);
}

float MathUtil::smallestAngleBetweenVectors(const FloatSize& v1, const FloatSize& v2)
{
    float dotProduct = (v1.width() * v2.width() + v1.height() * v2.height()) / (v1.diagonalLength() * v2.diagonalLength());
    // Clamp to compensate for rounding errors.
    dotProduct = std::max(-1.f, std::min(1.f, dotProduct));
    return rad2deg(acosf(dotProduct));
}

FloatSize MathUtil::projectVector(const FloatSize& source, const FloatSize& destination)
{
    float sourceDotDestination = source.width() * destination.width() + source.height() * destination.height();
    float projectedLength = sourceDotDestination / destination.diagonalLengthSquared();
    return FloatSize(projectedLength * destination.width(), projectedLength * destination.height());
}

} // namespace cc