1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
|
// Copyright 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/output/gl_renderer.h"
#include <algorithm>
#include <limits>
#include <set>
#include <string>
#include <vector>
#include "base/debug/trace_event.h"
#include "base/logging.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"
#include "cc/layers/video_layer_impl.h"
#include "cc/output/compositor_frame.h"
#include "cc/output/compositor_frame_metadata.h"
#include "cc/output/context_provider.h"
#include "cc/output/copy_output_request.h"
#include "cc/output/geometry_binding.h"
#include "cc/output/gl_frame_data.h"
#include "cc/output/output_surface.h"
#include "cc/output/render_surface_filters.h"
#include "cc/quads/picture_draw_quad.h"
#include "cc/quads/render_pass.h"
#include "cc/quads/stream_video_draw_quad.h"
#include "cc/quads/texture_draw_quad.h"
#include "cc/resources/layer_quad.h"
#include "cc/resources/scoped_resource.h"
#include "cc/resources/texture_mailbox_deleter.h"
#include "cc/trees/damage_tracker.h"
#include "cc/trees/proxy.h"
#include "cc/trees/single_thread_proxy.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/command_buffer/common/gpu_memory_allocation.h"
#include "third_party/WebKit/public/platform/WebGraphicsContext3D.h"
#include "third_party/khronos/GLES2/gl2.h"
#include "third_party/khronos/GLES2/gl2ext.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "third_party/skia/include/core/SkColorFilter.h"
#include "third_party/skia/include/core/SkSurface.h"
#include "third_party/skia/include/gpu/GrContext.h"
#include "third_party/skia/include/gpu/GrTexture.h"
#include "third_party/skia/include/gpu/SkGpuDevice.h"
#include "third_party/skia/include/gpu/SkGrTexturePixelRef.h"
#include "third_party/skia/include/gpu/gl/GrGLInterface.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect_conversions.h"
using blink::WebGraphicsContext3D;
using gpu::gles2::GLES2Interface;
namespace cc {
namespace {
// TODO(epenner): This should probably be moved to output surface.
//
// This implements a simple fence based on client side swaps.
// This is to isolate the ResourceProvider from 'frames' which
// it shouldn't need to care about, while still allowing us to
// enforce good texture recycling behavior strictly throughout
// the compositor (don't recycle a texture while it's in use).
class SimpleSwapFence : public ResourceProvider::Fence {
public:
SimpleSwapFence() : has_passed_(false) {}
virtual bool HasPassed() OVERRIDE { return has_passed_; }
void SetHasPassed() { has_passed_ = true; }
private:
virtual ~SimpleSwapFence() {}
bool has_passed_;
};
bool NeedsIOSurfaceReadbackWorkaround() {
#if defined(OS_MACOSX)
// This isn't strictly required in DumpRenderTree-mode when Mesa is used,
// but it doesn't seem to hurt.
return true;
#else
return false;
#endif
}
Float4 UVTransform(const TextureDrawQuad* quad) {
gfx::PointF uv0 = quad->uv_top_left;
gfx::PointF uv1 = quad->uv_bottom_right;
Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
if (quad->flipped) {
xform.data[1] = 1.0f - xform.data[1];
xform.data[3] = -xform.data[3];
}
return xform;
}
Float4 PremultipliedColor(SkColor color) {
const float factor = 1.0f / 255.0f;
const float alpha = SkColorGetA(color) * factor;
Float4 result = {
{SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha,
SkColorGetB(color) * factor * alpha, alpha}};
return result;
}
SamplerType SamplerTypeFromTextureTarget(GLenum target) {
switch (target) {
case GL_TEXTURE_2D:
return SamplerType2D;
case GL_TEXTURE_RECTANGLE_ARB:
return SamplerType2DRect;
case GL_TEXTURE_EXTERNAL_OES:
return SamplerTypeExternalOES;
default:
NOTREACHED();
return SamplerType2D;
}
}
// Smallest unit that impact anti-aliasing output. We use this to
// determine when anti-aliasing is unnecessary.
const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
} // anonymous namespace
struct GLRenderer::PendingAsyncReadPixels {
PendingAsyncReadPixels() : buffer(0) {}
scoped_ptr<CopyOutputRequest> copy_request;
base::CancelableClosure finished_read_pixels_callback;
unsigned buffer;
private:
DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels);
};
scoped_ptr<GLRenderer> GLRenderer::Create(
RendererClient* client,
const LayerTreeSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider,
TextureMailboxDeleter* texture_mailbox_deleter,
int highp_threshold_min) {
return make_scoped_ptr(new GLRenderer(client,
settings,
output_surface,
resource_provider,
texture_mailbox_deleter,
highp_threshold_min));
}
GLRenderer::GLRenderer(RendererClient* client,
const LayerTreeSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider,
TextureMailboxDeleter* texture_mailbox_deleter,
int highp_threshold_min)
: DirectRenderer(client, settings, output_surface, resource_provider),
offscreen_framebuffer_id_(0),
shared_geometry_quad_(gfx::RectF(-0.5f, -0.5f, 1.0f, 1.0f)),
gl_(output_surface->context_provider()->ContextGL()),
context_support_(output_surface->context_provider()->ContextSupport()),
texture_mailbox_deleter_(texture_mailbox_deleter),
is_backbuffer_discarded_(false),
visible_(true),
is_scissor_enabled_(false),
scissor_rect_needs_reset_(true),
stencil_shadow_(false),
blend_shadow_(false),
highp_threshold_min_(highp_threshold_min),
highp_threshold_cache_(0),
on_demand_tile_raster_resource_id_(0) {
DCHECK(gl_);
DCHECK(context_support_);
ContextProvider::Capabilities context_caps =
output_surface_->context_provider()->ContextCapabilities();
capabilities_.using_partial_swap =
settings_->partial_swap_enabled && context_caps.post_sub_buffer;
DCHECK(!context_caps.iosurface || context_caps.texture_rectangle);
capabilities_.using_egl_image = context_caps.egl_image_external;
capabilities_.max_texture_size = resource_provider_->max_texture_size();
capabilities_.best_texture_format = resource_provider_->best_texture_format();
// The updater can access textures while the GLRenderer is using them.
capabilities_.allow_partial_texture_updates = true;
// Check for texture fast paths. Currently we always use MO8 textures,
// so we only need to avoid POT textures if we have an NPOT fast-path.
capabilities_.avoid_pow2_textures = context_caps.fast_npot_mo8_textures;
capabilities_.using_offscreen_context3d = true;
capabilities_.using_map_image =
settings_->use_map_image && context_caps.map_image;
capabilities_.using_discard_framebuffer = context_caps.discard_framebuffer;
InitializeSharedObjects();
}
GLRenderer::~GLRenderer() {
while (!pending_async_read_pixels_.empty()) {
PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back();
pending_read->finished_read_pixels_callback.Cancel();
pending_async_read_pixels_.pop_back();
}
CleanupSharedObjects();
}
const RendererCapabilities& GLRenderer::Capabilities() const {
return capabilities_;
}
void GLRenderer::DebugGLCall(GLES2Interface* gl,
const char* command,
const char* file,
int line) {
GLuint error = gl->GetError();
if (error != GL_NO_ERROR)
LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line
<< "\n\tcommand: " << command << ", error "
<< static_cast<int>(error) << "\n";
}
void GLRenderer::SetVisible(bool visible) {
if (visible_ == visible)
return;
visible_ = visible;
EnforceMemoryPolicy();
context_support_->SetSurfaceVisible(visible);
}
void GLRenderer::SendManagedMemoryStats(size_t bytes_visible,
size_t bytes_visible_and_nearby,
size_t bytes_allocated) {
gpu::ManagedMemoryStats stats;
stats.bytes_required = bytes_visible;
stats.bytes_nice_to_have = bytes_visible_and_nearby;
stats.bytes_allocated = bytes_allocated;
stats.backbuffer_requested = !is_backbuffer_discarded_;
context_support_->SendManagedMemoryStats(stats);
}
void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); }
void GLRenderer::DiscardPixels(bool has_external_stencil_test,
bool draw_rect_covers_full_surface) {
if (has_external_stencil_test || !draw_rect_covers_full_surface ||
!capabilities_.using_discard_framebuffer)
return;
bool using_default_framebuffer =
!current_framebuffer_lock_ &&
output_surface_->capabilities().uses_default_gl_framebuffer;
GLenum attachments[] = {static_cast<GLenum>(
using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
gl_->DiscardFramebufferEXT(
GL_FRAMEBUFFER, arraysize(attachments), attachments);
}
void GLRenderer::ClearFramebuffer(DrawingFrame* frame,
bool has_external_stencil_test) {
// It's unsafe to clear when we have a stencil test because glClear ignores
// stencil.
if (has_external_stencil_test) {
DCHECK(!frame->current_render_pass->has_transparent_background);
return;
}
// On DEBUG builds, opaque render passes are cleared to blue to easily see
// regions that were not drawn on the screen.
if (frame->current_render_pass->has_transparent_background)
GLC(gl_, gl_->ClearColor(0, 0, 0, 0));
else
GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
bool always_clear = false;
#ifndef NDEBUG
always_clear = true;
#endif
if (always_clear || frame->current_render_pass->has_transparent_background) {
GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
if (always_clear)
clear_bits |= GL_STENCIL_BUFFER_BIT;
gl_->Clear(clear_bits);
}
}
void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) {
if (frame->device_viewport_rect.IsEmpty())
return;
TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame");
// TODO(enne): Do we need to reinitialize all of this state per frame?
ReinitializeGLState();
}
void GLRenderer::DoNoOp() {
GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
GLC(gl_, gl_->Flush());
}
void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad) {
DCHECK(quad->rect.Contains(quad->visible_rect));
if (quad->material != DrawQuad::TEXTURE_CONTENT) {
FlushTextureQuadCache();
}
switch (quad->material) {
case DrawQuad::INVALID:
NOTREACHED();
break;
case DrawQuad::CHECKERBOARD:
DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad));
break;
case DrawQuad::DEBUG_BORDER:
DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad));
break;
case DrawQuad::IO_SURFACE_CONTENT:
DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad));
break;
case DrawQuad::PICTURE_CONTENT:
DrawPictureQuad(frame, PictureDrawQuad::MaterialCast(quad));
break;
case DrawQuad::RENDER_PASS:
DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad));
break;
case DrawQuad::SOLID_COLOR:
DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad));
break;
case DrawQuad::STREAM_VIDEO_CONTENT:
DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad));
break;
case DrawQuad::TEXTURE_CONTENT:
EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad));
break;
case DrawQuad::TILED_CONTENT:
DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad));
break;
case DrawQuad::YUV_VIDEO_CONTENT:
DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad));
break;
}
}
void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame,
const CheckerboardDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
const TileCheckerboardProgram* program = GetTileCheckerboardProgram();
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
SkColor color = quad->color;
GLC(gl_,
gl_->Uniform4f(program->fragment_shader().color_location(),
SkColorGetR(color) * (1.0f / 255.0f),
SkColorGetG(color) * (1.0f / 255.0f),
SkColorGetB(color) * (1.0f / 255.0f),
1));
const int checkerboard_width = 16;
float frequency = 1.0f / checkerboard_width;
gfx::Rect tile_rect = quad->rect;
float tex_offset_x = tile_rect.x() % checkerboard_width;
float tex_offset_y = tile_rect.y() % checkerboard_width;
float tex_scale_x = tile_rect.width();
float tex_scale_y = tile_rect.height();
GLC(gl_,
gl_->Uniform4f(program->fragment_shader().tex_transform_location(),
tex_offset_x,
tex_offset_y,
tex_scale_x,
tex_scale_y));
GLC(gl_,
gl_->Uniform1f(program->fragment_shader().frequency_location(),
frequency));
SetShaderOpacity(quad->opacity(),
program->fragment_shader().alpha_location());
DrawQuadGeometry(frame,
quad->quadTransform(),
quad->rect,
program->vertex_shader().matrix_location());
}
void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame,
const DebugBorderDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
static float gl_matrix[16];
const DebugBorderProgram* program = GetDebugBorderProgram();
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
// Use the full quad_rect for debug quads to not move the edges based on
// partial swaps.
gfx::Rect layer_rect = quad->rect;
gfx::Transform render_matrix = quad->quadTransform();
render_matrix.Translate(0.5f * layer_rect.width() + layer_rect.x(),
0.5f * layer_rect.height() + layer_rect.y());
render_matrix.Scale(layer_rect.width(), layer_rect.height());
GLRenderer::ToGLMatrix(&gl_matrix[0],
frame->projection_matrix * render_matrix);
GLC(gl_,
gl_->UniformMatrix4fv(
program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0]));
SkColor color = quad->color;
float alpha = SkColorGetA(color) * (1.0f / 255.0f);
GLC(gl_,
gl_->Uniform4f(program->fragment_shader().color_location(),
(SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
alpha));
GLC(gl_, gl_->LineWidth(quad->width));
// The indices for the line are stored in the same array as the triangle
// indices.
GLC(gl_, gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0));
}
static SkBitmap ApplyImageFilter(GLRenderer* renderer,
ContextProvider* offscreen_contexts,
gfx::Point origin,
SkImageFilter* filter,
ScopedResource* source_texture_resource) {
if (!filter)
return SkBitmap();
if (!offscreen_contexts || !offscreen_contexts->GrContext())
return SkBitmap();
ResourceProvider::ScopedWriteLockGL lock(renderer->resource_provider(),
source_texture_resource->id());
// Flush the compositor context to ensure that textures there are available
// in the shared context. Do this after locking/creating the compositor
// texture.
renderer->resource_provider()->Flush();
// Make sure skia uses the correct GL context.
offscreen_contexts->MakeGrContextCurrent();
// Wrap the source texture in a Ganesh platform texture.
GrBackendTextureDesc backend_texture_description;
backend_texture_description.fWidth = source_texture_resource->size().width();
backend_texture_description.fHeight =
source_texture_resource->size().height();
backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
backend_texture_description.fTextureHandle = lock.texture_id();
backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
skia::RefPtr<GrTexture> texture =
skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
backend_texture_description));
SkImageInfo info = {
source_texture_resource->size().width(),
source_texture_resource->size().height(),
kPMColor_SkColorType,
kPremul_SkAlphaType
};
// Place the platform texture inside an SkBitmap.
SkBitmap source;
source.setConfig(info);
skia::RefPtr<SkGrPixelRef> pixel_ref =
skia::AdoptRef(new SkGrPixelRef(info, texture.get()));
source.setPixelRef(pixel_ref.get());
// Create a scratch texture for backing store.
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc.fSampleCnt = 0;
desc.fWidth = source.width();
desc.fHeight = source.height();
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
GrAutoScratchTexture scratch_texture(
offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch);
skia::RefPtr<GrTexture> backing_store =
skia::AdoptRef(scratch_texture.detach());
// Create a device and canvas using that backing store.
SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get());
SkCanvas canvas(&device);
// Draw the source bitmap through the filter to the canvas.
SkPaint paint;
paint.setImageFilter(filter);
canvas.clear(SK_ColorTRANSPARENT);
// TODO(senorblanco): in addition to the origin translation here, the canvas
// should also be scaled to accomodate device pixel ratio and pinch zoom. See
// crbug.com/281516 and crbug.com/281518.
canvas.translate(SkIntToScalar(-origin.x()), SkIntToScalar(-origin.y()));
canvas.drawSprite(source, 0, 0, &paint);
// Flush skia context so that all the rendered stuff appears on the
// texture.
offscreen_contexts->GrContext()->flush();
// Flush the GL context so rendering results from this context are
// visible in the compositor's context.
offscreen_contexts->ContextGL()->Flush();
return device.accessBitmap(false);
}
static SkBitmap ApplyBlendModeWithBackdrop(
GLRenderer* renderer,
ContextProvider* offscreen_contexts,
SkBitmap source_bitmap_with_filters,
ScopedResource* source_texture_resource,
ScopedResource* background_texture_resource,
SkXfermode::Mode blend_mode) {
if (!offscreen_contexts || !offscreen_contexts->GrContext())
return source_bitmap_with_filters;
DCHECK(background_texture_resource);
DCHECK(source_texture_resource);
gfx::Size source_size = source_texture_resource->size();
gfx::Size background_size = background_texture_resource->size();
DCHECK_LE(background_size.width(), source_size.width());
DCHECK_LE(background_size.height(), source_size.height());
int source_texture_with_filters_id;
scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
if (source_bitmap_with_filters.getTexture()) {
DCHECK_EQ(source_size.width(), source_bitmap_with_filters.width());
DCHECK_EQ(source_size.height(), source_bitmap_with_filters.height());
GrTexture* texture =
reinterpret_cast<GrTexture*>(source_bitmap_with_filters.getTexture());
source_texture_with_filters_id = texture->getTextureHandle();
} else {
lock.reset(new ResourceProvider::ScopedReadLockGL(
renderer->resource_provider(), source_texture_resource->id()));
source_texture_with_filters_id = lock->texture_id();
}
ResourceProvider::ScopedReadLockGL lock_background(
renderer->resource_provider(), background_texture_resource->id());
// Flush the compositor context to ensure that textures there are available
// in the shared context. Do this after locking/creating the compositor
// texture.
renderer->resource_provider()->Flush();
// Make sure skia uses the correct GL context.
offscreen_contexts->MakeGrContextCurrent();
// Wrap the source texture in a Ganesh platform texture.
GrBackendTextureDesc backend_texture_description;
backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
backend_texture_description.fWidth = source_size.width();
backend_texture_description.fHeight = source_size.height();
backend_texture_description.fTextureHandle = source_texture_with_filters_id;
skia::RefPtr<GrTexture> source_texture =
skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
backend_texture_description));
backend_texture_description.fWidth = background_size.width();
backend_texture_description.fHeight = background_size.height();
backend_texture_description.fTextureHandle = lock_background.texture_id();
skia::RefPtr<GrTexture> background_texture =
skia::AdoptRef(offscreen_contexts->GrContext()->wrapBackendTexture(
backend_texture_description));
SkImageInfo source_info = {
source_size.width(),
source_size.height(),
kPMColor_SkColorType,
kPremul_SkAlphaType
};
// Place the platform texture inside an SkBitmap.
SkBitmap source;
source.setConfig(source_info);
skia::RefPtr<SkGrPixelRef> source_pixel_ref =
skia::AdoptRef(new SkGrPixelRef(source_info, source_texture.get()));
source.setPixelRef(source_pixel_ref.get());
SkImageInfo background_info = {
background_size.width(),
background_size.height(),
kPMColor_SkColorType,
kPremul_SkAlphaType
};
SkBitmap background;
background.setConfig(background_info);
skia::RefPtr<SkGrPixelRef> background_pixel_ref =
skia::AdoptRef(new SkGrPixelRef(
background_info, background_texture.get()));
background.setPixelRef(background_pixel_ref.get());
// Create a scratch texture for backing store.
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc.fSampleCnt = 0;
desc.fWidth = source.width();
desc.fHeight = source.height();
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
GrAutoScratchTexture scratch_texture(
offscreen_contexts->GrContext(), desc, GrContext::kExact_ScratchTexMatch);
skia::RefPtr<GrTexture> backing_store =
skia::AdoptRef(scratch_texture.detach());
// Create a device and canvas using that backing store.
SkGpuDevice device(offscreen_contexts->GrContext(), backing_store.get());
SkCanvas canvas(&device);
// Draw the source bitmap through the filter to the canvas.
canvas.clear(SK_ColorTRANSPARENT);
canvas.drawSprite(background, 0, 0);
SkPaint paint;
paint.setXfermodeMode(blend_mode);
canvas.drawSprite(source, 0, 0, &paint);
// Flush skia context so that all the rendered stuff appears on the
// texture.
offscreen_contexts->GrContext()->flush();
// Flush the GL context so rendering results from this context are
// visible in the compositor's context.
offscreen_contexts->ContextGL()->Flush();
return device.accessBitmap(false);
}
scoped_ptr<ScopedResource> GLRenderer::GetBackgroundWithFilters(
DrawingFrame* frame,
const RenderPassDrawQuad* quad,
const gfx::Transform& contents_device_transform,
const gfx::Transform& contents_device_transform_inverse,
bool* background_changed) {
// This method draws a background filter, which applies a filter to any pixels
// behind the quad and seen through its background. The algorithm works as
// follows:
// 1. Compute a bounding box around the pixels that will be visible through
// the quad.
// 2. Read the pixels in the bounding box into a buffer R.
// 3. Apply the background filter to R, so that it is applied in the pixels'
// coordinate space.
// 4. Apply the quad's inverse transform to map the pixels in R into the
// quad's content space. This implicitly clips R by the content bounds of the
// quad since the destination texture has bounds matching the quad's content.
// 5. Draw the background texture for the contents using the same transform as
// used to draw the contents itself. This is done without blending to replace
// the current background pixels with the new filtered background.
// 6. Draw the contents of the quad over drop of the new background with
// blending, as per usual. The filtered background pixels will show through
// any non-opaque pixels in this draws.
//
// Pixel copies in this algorithm occur at steps 2, 3, 4, and 5.
// TODO(danakj): When this algorithm changes, update
// LayerTreeHost::PrioritizeTextures() accordingly.
// TODO(danakj): We only allow background filters on an opaque render surface
// because other surfaces may contain translucent pixels, and the contents
// behind those translucent pixels wouldn't have the filter applied.
bool apply_background_filters =
!frame->current_render_pass->has_transparent_background;
DCHECK(!frame->current_texture);
// TODO(ajuma): Add support for reference filters once
// FilterOperations::GetOutsets supports reference filters.
if (apply_background_filters && quad->background_filters.HasReferenceFilter())
apply_background_filters = false;
// TODO(danakj): Do a single readback for both the surface and replica and
// cache the filtered results (once filter textures are not reused).
gfx::Rect window_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect(
contents_device_transform, SharedGeometryQuad().BoundingBox()));
int top, right, bottom, left;
quad->background_filters.GetOutsets(&top, &right, &bottom, &left);
window_rect.Inset(-left, -top, -right, -bottom);
window_rect.Intersect(
MoveFromDrawToWindowSpace(frame->current_render_pass->output_rect));
scoped_ptr<ScopedResource> device_background_texture =
ScopedResource::Create(resource_provider_);
// The TextureUsageFramebuffer hint makes ResourceProvider avoid immutable
// storage allocation (texStorage2DEXT) for this texture. copyTexImage2D fails
// when called on a texture having immutable storage.
device_background_texture->Allocate(
window_rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
{
ResourceProvider::ScopedWriteLockGL lock(resource_provider_,
device_background_texture->id());
GetFramebufferTexture(
lock.texture_id(), device_background_texture->format(), window_rect);
}
skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
quad->background_filters, device_background_texture->size());
SkBitmap filtered_device_background;
if (apply_background_filters) {
filtered_device_background =
ApplyImageFilter(this,
frame->offscreen_context_provider,
quad->rect.origin(),
filter.get(),
device_background_texture.get());
}
*background_changed = (filtered_device_background.getTexture() != NULL);
int filtered_device_background_texture_id = 0;
scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
if (filtered_device_background.getTexture()) {
GrTexture* texture =
reinterpret_cast<GrTexture*>(filtered_device_background.getTexture());
filtered_device_background_texture_id = texture->getTextureHandle();
} else {
lock.reset(new ResourceProvider::ScopedReadLockGL(
resource_provider_, device_background_texture->id()));
filtered_device_background_texture_id = lock->texture_id();
}
scoped_ptr<ScopedResource> background_texture =
ScopedResource::Create(resource_provider_);
background_texture->Allocate(
quad->rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
const RenderPass* target_render_pass = frame->current_render_pass;
bool using_background_texture =
UseScopedTexture(frame, background_texture.get(), quad->rect);
if (using_background_texture) {
// Copy the readback pixels from device to the background texture for the
// surface.
gfx::Transform device_to_framebuffer_transform;
device_to_framebuffer_transform.Translate(
quad->rect.width() * 0.5f + quad->rect.x(),
quad->rect.height() * 0.5f + quad->rect.y());
device_to_framebuffer_transform.Scale(quad->rect.width(),
quad->rect.height());
device_to_framebuffer_transform.PreconcatTransform(
contents_device_transform_inverse);
#ifndef NDEBUG
GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
gl_->Clear(GL_COLOR_BUFFER_BIT);
#endif
// The filtered_deveice_background_texture is oriented the same as the frame
// buffer. The transform we are copying with has a vertical flip, as well as
// the |device_to_framebuffer_transform|, which cancel each other out. So do
// not flip the contents in the shader to maintain orientation.
bool flip_vertically = false;
CopyTextureToFramebuffer(frame,
filtered_device_background_texture_id,
window_rect,
device_to_framebuffer_transform,
flip_vertically);
}
UseRenderPass(frame, target_render_pass);
if (!using_background_texture)
return scoped_ptr<ScopedResource>();
return background_texture.Pass();
}
void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame,
const RenderPassDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
ScopedResource* contents_texture =
render_pass_textures_.get(quad->render_pass_id);
if (!contents_texture || !contents_texture->id())
return;
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
gfx::Transform contents_device_transform =
frame->window_matrix * frame->projection_matrix * quad_rect_matrix;
contents_device_transform.FlattenTo2d();
// Can only draw surface if device matrix is invertible.
gfx::Transform contents_device_transform_inverse(
gfx::Transform::kSkipInitialization);
if (!contents_device_transform.GetInverse(&contents_device_transform_inverse))
return;
bool need_background_texture =
quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode ||
!quad->background_filters.IsEmpty();
bool background_changed = false;
scoped_ptr<ScopedResource> background_texture;
if (need_background_texture) {
// The pixels from the filtered background should completely replace the
// current pixel values.
bool disable_blending = blend_enabled();
if (disable_blending)
SetBlendEnabled(false);
background_texture =
GetBackgroundWithFilters(frame,
quad,
contents_device_transform,
contents_device_transform_inverse,
&background_changed);
if (disable_blending)
SetBlendEnabled(true);
}
// TODO(senorblanco): Cache this value so that we don't have to do it for both
// the surface and its replica. Apply filters to the contents texture.
SkBitmap filter_bitmap;
SkScalar color_matrix[20];
bool use_color_matrix = false;
// TODO(ajuma): Always use RenderSurfaceFilters::BuildImageFilter, not just
// when we have a reference filter.
if (!quad->filters.IsEmpty()) {
skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
quad->filters, contents_texture->size());
if (filter) {
skia::RefPtr<SkColorFilter> cf;
{
SkColorFilter* colorfilter_rawptr = NULL;
filter->asColorFilter(&colorfilter_rawptr);
cf = skia::AdoptRef(colorfilter_rawptr);
}
if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) {
// We have a single color matrix as a filter; apply it locally
// in the compositor.
use_color_matrix = true;
} else {
filter_bitmap = ApplyImageFilter(this,
frame->offscreen_context_provider,
quad->rect.origin(),
filter.get(),
contents_texture);
}
}
}
if (quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode &&
background_texture) {
filter_bitmap =
ApplyBlendModeWithBackdrop(this,
frame->offscreen_context_provider,
filter_bitmap,
contents_texture,
background_texture.get(),
quad->shared_quad_state->blend_mode);
}
// Draw the background texture if it has some filters applied.
if (background_texture && background_changed) {
DCHECK(background_texture->size() == quad->rect.size());
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
background_texture->id());
// The background_texture is oriented the same as the frame buffer. The
// transform we are copying with has a vertical flip, so flip the contents
// in the shader to maintain orientation
bool flip_vertically = true;
CopyTextureToFramebuffer(frame,
lock.texture_id(),
quad->rect,
quad->quadTransform(),
flip_vertically);
}
bool clipped = false;
gfx::QuadF device_quad = MathUtil::MapQuad(
contents_device_transform, SharedGeometryQuad(), &clipped);
LayerQuad device_layer_bounds(gfx::QuadF(device_quad.BoundingBox()));
LayerQuad device_layer_edges(device_quad);
// Use anti-aliasing programs only when necessary.
bool use_aa =
!clipped && (!device_quad.IsRectilinear() ||
!gfx::IsNearestRectWithinDistance(device_quad.BoundingBox(),
kAntiAliasingEpsilon));
if (use_aa) {
device_layer_bounds.InflateAntiAliasingDistance();
device_layer_edges.InflateAntiAliasingDistance();
}
scoped_ptr<ResourceProvider::ScopedReadLockGL> mask_resource_lock;
unsigned mask_texture_id = 0;
if (quad->mask_resource_id) {
mask_resource_lock.reset(new ResourceProvider::ScopedReadLockGL(
resource_provider_, quad->mask_resource_id));
mask_texture_id = mask_resource_lock->texture_id();
}
// TODO(danakj): use the background_texture and blend the background in with
// this draw instead of having a separate copy of the background texture.
scoped_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock;
if (filter_bitmap.getTexture()) {
GrTexture* texture =
reinterpret_cast<GrTexture*>(filter_bitmap.getTexture());
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle());
} else {
contents_resource_lock =
make_scoped_ptr(new ResourceProvider::ScopedSamplerGL(
resource_provider_, contents_texture->id(), GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
contents_resource_lock->target());
}
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
int shader_quad_location = -1;
int shader_edge_location = -1;
int shader_viewport_location = -1;
int shader_mask_sampler_location = -1;
int shader_mask_tex_coord_scale_location = -1;
int shader_mask_tex_coord_offset_location = -1;
int shader_matrix_location = -1;
int shader_alpha_location = -1;
int shader_color_matrix_location = -1;
int shader_color_offset_location = -1;
int shader_tex_transform_location = -1;
if (use_aa && mask_texture_id && !use_color_matrix) {
const RenderPassMaskProgramAA* program =
GetRenderPassMaskProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_quad_location = program->vertex_shader().quad_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
} else if (!use_aa && mask_texture_id && !use_color_matrix) {
const RenderPassMaskProgram* program =
GetRenderPassMaskProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
} else if (use_aa && !mask_texture_id && !use_color_matrix) {
const RenderPassProgramAA* program =
GetRenderPassProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_quad_location = program->vertex_shader().quad_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
} else if (use_aa && mask_texture_id && use_color_matrix) {
const RenderPassMaskColorMatrixProgramAA* program =
GetRenderPassMaskColorMatrixProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_quad_location = program->vertex_shader().quad_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else if (use_aa && !mask_texture_id && use_color_matrix) {
const RenderPassColorMatrixProgramAA* program =
GetRenderPassColorMatrixProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_quad_location = program->vertex_shader().quad_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else if (!use_aa && mask_texture_id && use_color_matrix) {
const RenderPassMaskColorMatrixProgram* program =
GetRenderPassMaskColorMatrixProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else if (!use_aa && !mask_texture_id && use_color_matrix) {
const RenderPassColorMatrixProgram* program =
GetRenderPassColorMatrixProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else {
const RenderPassProgram* program =
GetRenderPassProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
}
float tex_scale_x =
quad->rect.width() / static_cast<float>(contents_texture->size().width());
float tex_scale_y = quad->rect.height() /
static_cast<float>(contents_texture->size().height());
DCHECK_LE(tex_scale_x, 1.0f);
DCHECK_LE(tex_scale_y, 1.0f);
DCHECK(shader_tex_transform_location != -1 || IsContextLost());
// Flip the content vertically in the shader, as the RenderPass input
// texture is already oriented the same way as the framebuffer, but the
// projection transform does a flip.
GLC(gl_,
gl_->Uniform4f(shader_tex_transform_location,
0.0f,
tex_scale_y,
tex_scale_x,
-tex_scale_y));
scoped_ptr<ResourceProvider::ScopedSamplerGL> shader_mask_sampler_lock;
if (shader_mask_sampler_location != -1) {
DCHECK_NE(shader_mask_tex_coord_scale_location, 1);
DCHECK_NE(shader_mask_tex_coord_offset_location, 1);
GLC(gl_, gl_->Uniform1i(shader_mask_sampler_location, 1));
float mask_tex_scale_x = quad->mask_uv_rect.width() / tex_scale_x;
float mask_tex_scale_y = quad->mask_uv_rect.height() / tex_scale_y;
// Mask textures are oriented vertically flipped relative to the framebuffer
// and the RenderPass contents texture, so we flip the tex coords from the
// RenderPass texture to find the mask texture coords.
GLC(gl_,
gl_->Uniform2f(shader_mask_tex_coord_offset_location,
quad->mask_uv_rect.x(),
quad->mask_uv_rect.y() + quad->mask_uv_rect.height()));
GLC(gl_,
gl_->Uniform2f(shader_mask_tex_coord_scale_location,
mask_tex_scale_x,
-mask_tex_scale_y));
shader_mask_sampler_lock = make_scoped_ptr(
new ResourceProvider::ScopedSamplerGL(resource_provider_,
quad->mask_resource_id,
GL_TEXTURE1,
GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
shader_mask_sampler_lock->target());
}
if (shader_edge_location != -1) {
float edge[24];
device_layer_edges.ToFloatArray(edge);
device_layer_bounds.ToFloatArray(&edge[12]);
GLC(gl_, gl_->Uniform3fv(shader_edge_location, 8, edge));
}
if (shader_viewport_location != -1) {
float viewport[4] = {static_cast<float>(viewport_.x()),
static_cast<float>(viewport_.y()),
static_cast<float>(viewport_.width()),
static_cast<float>(viewport_.height()), };
GLC(gl_, gl_->Uniform4fv(shader_viewport_location, 1, viewport));
}
if (shader_color_matrix_location != -1) {
float matrix[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j)
matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]);
}
GLC(gl_,
gl_->UniformMatrix4fv(shader_color_matrix_location, 1, false, matrix));
}
static const float kScale = 1.0f / 255.0f;
if (shader_color_offset_location != -1) {
float offset[4];
for (int i = 0; i < 4; ++i)
offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale;
GLC(gl_, gl_->Uniform4fv(shader_color_offset_location, 1, offset));
}
// Map device space quad to surface space. contents_device_transform has no 3d
// component since it was flattened, so we don't need to project.
gfx::QuadF surface_quad = MathUtil::MapQuad(contents_device_transform_inverse,
device_layer_edges.ToQuadF(),
&clipped);
SetShaderOpacity(quad->opacity(), shader_alpha_location);
SetShaderQuadF(surface_quad, shader_quad_location);
DrawQuadGeometry(
frame, quad->quadTransform(), quad->rect, shader_matrix_location);
// Flush the compositor context before the filter bitmap goes out of
// scope, so the draw gets processed before the filter texture gets deleted.
if (filter_bitmap.getTexture())
GLC(gl_, gl_->Flush());
}
struct SolidColorProgramUniforms {
unsigned program;
unsigned matrix_location;
unsigned viewport_location;
unsigned quad_location;
unsigned edge_location;
unsigned color_location;
};
template <class T>
static void SolidColorUniformLocation(T program,
SolidColorProgramUniforms* uniforms) {
uniforms->program = program->program();
uniforms->matrix_location = program->vertex_shader().matrix_location();
uniforms->viewport_location = program->vertex_shader().viewport_location();
uniforms->quad_location = program->vertex_shader().quad_location();
uniforms->edge_location = program->vertex_shader().edge_location();
uniforms->color_location = program->fragment_shader().color_location();
}
// static
bool GLRenderer::SetupQuadForAntialiasing(
const gfx::Transform& device_transform,
const DrawQuad* quad,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::Rect tile_rect = quad->visible_rect;
bool clipped = false;
gfx::QuadF device_layer_quad = MathUtil::MapQuad(
device_transform, gfx::QuadF(quad->visibleContentRect()), &clipped);
bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
bool is_nearest_rect_within_epsilon =
is_axis_aligned_in_target &&
gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
kAntiAliasingEpsilon);
// AAing clipped quads is not supported by the code yet.
bool use_aa = !clipped && !is_nearest_rect_within_epsilon && quad->IsEdge();
if (!use_aa)
return false;
LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox()));
device_layer_bounds.InflateAntiAliasingDistance();
LayerQuad device_layer_edges(device_layer_quad);
device_layer_edges.InflateAntiAliasingDistance();
device_layer_edges.ToFloatArray(edge);
device_layer_bounds.ToFloatArray(&edge[12]);
gfx::PointF bottom_right = tile_rect.bottom_right();
gfx::PointF bottom_left = tile_rect.bottom_left();
gfx::PointF top_left = tile_rect.origin();
gfx::PointF top_right = tile_rect.top_right();
// Map points to device space.
bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped);
DCHECK(!clipped);
bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped);
DCHECK(!clipped);
top_left = MathUtil::MapPoint(device_transform, top_left, &clipped);
DCHECK(!clipped);
top_right = MathUtil::MapPoint(device_transform, top_right, &clipped);
DCHECK(!clipped);
LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
LayerQuad::Edge left_edge(bottom_left, top_left);
LayerQuad::Edge top_edge(top_left, top_right);
LayerQuad::Edge right_edge(top_right, bottom_right);
// Only apply anti-aliasing to edges not clipped by culling or scissoring.
if (quad->IsTopEdge() && tile_rect.y() == quad->rect.y())
top_edge = device_layer_edges.top();
if (quad->IsLeftEdge() && tile_rect.x() == quad->rect.x())
left_edge = device_layer_edges.left();
if (quad->IsRightEdge() && tile_rect.right() == quad->rect.right())
right_edge = device_layer_edges.right();
if (quad->IsBottomEdge() && tile_rect.bottom() == quad->rect.bottom())
bottom_edge = device_layer_edges.bottom();
float sign = gfx::QuadF(tile_rect).IsCounterClockwise() ? -1 : 1;
bottom_edge.scale(sign);
left_edge.scale(sign);
top_edge.scale(sign);
right_edge.scale(sign);
// Create device space quad.
LayerQuad device_quad(left_edge, top_edge, right_edge, bottom_edge);
// Map device space quad to local space. device_transform has no 3d
// component since it was flattened, so we don't need to project. We should
// have already checked that the transform was uninvertible above.
gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization);
bool did_invert = device_transform.GetInverse(&inverse_device_transform);
DCHECK(did_invert);
*local_quad = MathUtil::MapQuad(
inverse_device_transform, device_quad.ToQuadF(), &clipped);
// We should not DCHECK(!clipped) here, because anti-aliasing inflation may
// cause device_quad to become clipped. To our knowledge this scenario does
// not need to be handled differently than the unclipped case.
return true;
}
void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame,
const SolidColorDrawQuad* quad) {
gfx::Rect tile_rect = quad->visible_rect;
SkColor color = quad->color;
float opacity = quad->opacity();
float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
// Early out if alpha is small enough that quad doesn't contribute to output.
if (alpha < std::numeric_limits<float>::epsilon() &&
quad->ShouldDrawWithBlending())
return;
gfx::Transform device_transform =
frame->window_matrix * frame->projection_matrix * quad->quadTransform();
device_transform.FlattenTo2d();
if (!device_transform.IsInvertible())
return;
gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
float edge[24];
bool use_aa =
settings_->allow_antialiasing && !quad->force_anti_aliasing_off &&
SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
SolidColorProgramUniforms uniforms;
if (use_aa)
SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms);
else
SolidColorUniformLocation(GetSolidColorProgram(), &uniforms);
SetUseProgram(uniforms.program);
GLC(gl_,
gl_->Uniform4f(uniforms.color_location,
(SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
alpha));
if (use_aa) {
float viewport[4] = {static_cast<float>(viewport_.x()),
static_cast<float>(viewport_.y()),
static_cast<float>(viewport_.width()),
static_cast<float>(viewport_.height()), };
GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
}
// Enable blending when the quad properties require it or if we decided
// to use antialiasing.
SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderQuadF(local_quad, uniforms.quad_location);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
tile_rect.size());
DrawQuadGeometry(
frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
}
struct TileProgramUniforms {
unsigned program;
unsigned matrix_location;
unsigned viewport_location;
unsigned quad_location;
unsigned edge_location;
unsigned vertex_tex_transform_location;
unsigned sampler_location;
unsigned fragment_tex_transform_location;
unsigned alpha_location;
};
template <class T>
static void TileUniformLocation(T program, TileProgramUniforms* uniforms) {
uniforms->program = program->program();
uniforms->matrix_location = program->vertex_shader().matrix_location();
uniforms->viewport_location = program->vertex_shader().viewport_location();
uniforms->quad_location = program->vertex_shader().quad_location();
uniforms->edge_location = program->vertex_shader().edge_location();
uniforms->vertex_tex_transform_location =
program->vertex_shader().vertex_tex_transform_location();
uniforms->sampler_location = program->fragment_shader().sampler_location();
uniforms->alpha_location = program->fragment_shader().alpha_location();
uniforms->fragment_tex_transform_location =
program->fragment_shader().fragment_tex_transform_location();
}
void GLRenderer::DrawTileQuad(const DrawingFrame* frame,
const TileDrawQuad* quad) {
DrawContentQuad(frame, quad, quad->resource_id);
}
void GLRenderer::DrawContentQuad(const DrawingFrame* frame,
const ContentDrawQuadBase* quad,
ResourceProvider::ResourceId resource_id) {
gfx::Rect tile_rect = quad->visible_rect;
gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
quad->tex_coord_rect, quad->rect, tile_rect);
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
gfx::RectF clamp_geom_rect(tile_rect);
gfx::RectF clamp_tex_rect(tex_coord_rect);
// Clamp texture coordinates to avoid sampling outside the layer
// by deflating the tile region half a texel or half a texel
// minus epsilon for one pixel layers. The resulting clamp region
// is mapped to the unit square by the vertex shader and mapped
// back to normalized texture coordinates by the fragment shader
// after being clamped to 0-1 range.
float tex_clamp_x =
std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
float tex_clamp_y =
std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
float geom_clamp_x =
std::min(tex_clamp_x * tex_to_geom_scale_x,
0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
float geom_clamp_y =
std::min(tex_clamp_y * tex_to_geom_scale_y,
0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
// Map clamping rectangle to unit square.
float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
float vertex_tex_translate_y =
-clamp_geom_rect.y() / clamp_geom_rect.height();
float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
gfx::Transform device_transform =
frame->window_matrix * frame->projection_matrix * quad->quadTransform();
device_transform.FlattenTo2d();
if (!device_transform.IsInvertible())
return;
gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
float edge[24];
bool use_aa =
settings_->allow_antialiasing &&
SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
GLenum filter = (use_aa || scaled ||
!quad->quadTransform().IsIdentityOrIntegerTranslation())
? GL_LINEAR
: GL_NEAREST;
ResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id, filter);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
float fragment_tex_translate_x = clamp_tex_rect.x();
float fragment_tex_translate_y = clamp_tex_rect.y();
float fragment_tex_scale_x = clamp_tex_rect.width();
float fragment_tex_scale_y = clamp_tex_rect.height();
// Map to normalized texture coordinates.
if (sampler != SamplerType2DRect) {
gfx::Size texture_size = quad->texture_size;
DCHECK(!texture_size.IsEmpty());
fragment_tex_translate_x /= texture_size.width();
fragment_tex_translate_y /= texture_size.height();
fragment_tex_scale_x /= texture_size.width();
fragment_tex_scale_y /= texture_size.height();
}
TileProgramUniforms uniforms;
if (use_aa) {
if (quad->swizzle_contents) {
TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler),
&uniforms);
}
} else {
if (quad->ShouldDrawWithBlending()) {
if (quad->swizzle_contents) {
TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgram(tex_coord_precision, sampler),
&uniforms);
}
} else {
if (quad->swizzle_contents) {
TileUniformLocation(
GetTileProgramSwizzleOpaque(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler),
&uniforms);
}
}
}
SetUseProgram(uniforms.program);
GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0));
if (use_aa) {
float viewport[4] = {static_cast<float>(viewport_.x()),
static_cast<float>(viewport_.y()),
static_cast<float>(viewport_.width()),
static_cast<float>(viewport_.height()), };
GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
GLC(gl_,
gl_->Uniform4f(uniforms.vertex_tex_transform_location,
vertex_tex_translate_x,
vertex_tex_translate_y,
vertex_tex_scale_x,
vertex_tex_scale_y));
GLC(gl_,
gl_->Uniform4f(uniforms.fragment_tex_transform_location,
fragment_tex_translate_x,
fragment_tex_translate_y,
fragment_tex_scale_x,
fragment_tex_scale_y));
} else {
// Move fragment shader transform to vertex shader. We can do this while
// still producing correct results as fragment_tex_transform_location
// should always be non-negative when tiles are transformed in a way
// that could result in sampling outside the layer.
vertex_tex_scale_x *= fragment_tex_scale_x;
vertex_tex_scale_y *= fragment_tex_scale_y;
vertex_tex_translate_x *= fragment_tex_scale_x;
vertex_tex_translate_y *= fragment_tex_scale_y;
vertex_tex_translate_x += fragment_tex_translate_x;
vertex_tex_translate_y += fragment_tex_translate_y;
GLC(gl_,
gl_->Uniform4f(uniforms.vertex_tex_transform_location,
vertex_tex_translate_x,
vertex_tex_translate_y,
vertex_tex_scale_x,
vertex_tex_scale_y));
}
// Enable blending when the quad properties require it or if we decided
// to use antialiasing.
SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderOpacity(quad->opacity(), uniforms.alpha_location);
SetShaderQuadF(local_quad, uniforms.quad_location);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
tile_rect.size());
DrawQuadGeometry(
frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
}
void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame,
const YUVVideoDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
bool use_alpha_plane = quad->a_plane_resource_id != 0;
ResourceProvider::ScopedSamplerGL y_plane_lock(
resource_provider_, quad->y_plane_resource_id, GL_TEXTURE1, GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), y_plane_lock.target());
ResourceProvider::ScopedSamplerGL u_plane_lock(
resource_provider_, quad->u_plane_resource_id, GL_TEXTURE2, GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), u_plane_lock.target());
ResourceProvider::ScopedSamplerGL v_plane_lock(
resource_provider_, quad->v_plane_resource_id, GL_TEXTURE3, GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), v_plane_lock.target());
scoped_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock;
if (use_alpha_plane) {
a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
resource_provider_, quad->a_plane_resource_id, GL_TEXTURE4, GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), a_plane_lock->target());
}
int tex_scale_location = -1;
int matrix_location = -1;
int y_texture_location = -1;
int u_texture_location = -1;
int v_texture_location = -1;
int a_texture_location = -1;
int yuv_matrix_location = -1;
int yuv_adj_location = -1;
int alpha_location = -1;
if (use_alpha_plane) {
const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision);
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
tex_scale_location = program->vertex_shader().tex_scale_location();
matrix_location = program->vertex_shader().matrix_location();
y_texture_location = program->fragment_shader().y_texture_location();
u_texture_location = program->fragment_shader().u_texture_location();
v_texture_location = program->fragment_shader().v_texture_location();
a_texture_location = program->fragment_shader().a_texture_location();
yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
yuv_adj_location = program->fragment_shader().yuv_adj_location();
alpha_location = program->fragment_shader().alpha_location();
} else {
const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision);
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
tex_scale_location = program->vertex_shader().tex_scale_location();
matrix_location = program->vertex_shader().matrix_location();
y_texture_location = program->fragment_shader().y_texture_location();
u_texture_location = program->fragment_shader().u_texture_location();
v_texture_location = program->fragment_shader().v_texture_location();
yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
yuv_adj_location = program->fragment_shader().yuv_adj_location();
alpha_location = program->fragment_shader().alpha_location();
}
GLC(gl_,
gl_->Uniform2f(tex_scale_location,
quad->tex_scale.width(),
quad->tex_scale.height()));
GLC(gl_, gl_->Uniform1i(y_texture_location, 1));
GLC(gl_, gl_->Uniform1i(u_texture_location, 2));
GLC(gl_, gl_->Uniform1i(v_texture_location, 3));
if (use_alpha_plane)
GLC(gl_, gl_->Uniform1i(a_texture_location, 4));
// These values are magic numbers that are used in the transformation from YUV
// to RGB color values. They are taken from the following webpage:
// http://www.fourcc.org/fccyvrgb.php
float yuv_to_rgb[9] = {1.164f, 1.164f, 1.164f, 0.0f, -.391f,
2.018f, 1.596f, -.813f, 0.0f, };
GLC(gl_, gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb));
// These values map to 16, 128, and 128 respectively, and are computed
// as a fraction over 256 (e.g. 16 / 256 = 0.0625).
// They are used in the YUV to RGBA conversion formula:
// Y - 16 : Gives 16 values of head and footroom for overshooting
// U - 128 : Turns unsigned U into signed U [-128,127]
// V - 128 : Turns unsigned V into signed V [-128,127]
float yuv_adjust[3] = {-0.0625f, -0.5f, -0.5f, };
GLC(gl_, gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust));
SetShaderOpacity(quad->opacity(), alpha_location);
DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, matrix_location);
}
void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame,
const StreamVideoDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
static float gl_matrix[16];
DCHECK(capabilities_.using_egl_image);
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
const VideoStreamTextureProgram* program =
GetVideoStreamTextureProgram(tex_coord_precision);
SetUseProgram(program->program());
ToGLMatrix(&gl_matrix[0], quad->matrix);
GLC(gl_,
gl_->UniformMatrix4fv(
program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix));
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id);
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id()));
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
SetShaderOpacity(quad->opacity(),
program->fragment_shader().alpha_location());
DrawQuadGeometry(frame,
quad->quadTransform(),
quad->rect,
program->vertex_shader().matrix_location());
}
void GLRenderer::DrawPictureQuad(const DrawingFrame* frame,
const PictureDrawQuad* quad) {
if (on_demand_tile_raster_bitmap_.width() != quad->texture_size.width() ||
on_demand_tile_raster_bitmap_.height() != quad->texture_size.height()) {
on_demand_tile_raster_bitmap_.setConfig(SkBitmap::kARGB_8888_Config,
quad->texture_size.width(),
quad->texture_size.height());
on_demand_tile_raster_bitmap_.allocPixels();
if (on_demand_tile_raster_resource_id_)
resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
on_demand_tile_raster_resource_id_ =
resource_provider_->CreateGLTexture(quad->texture_size,
GL_TEXTURE_2D,
GL_TEXTURE_POOL_UNMANAGED_CHROMIUM,
GL_CLAMP_TO_EDGE,
ResourceProvider::TextureUsageAny,
quad->texture_format);
}
SkBitmapDevice device(on_demand_tile_raster_bitmap_);
SkCanvas canvas(&device);
quad->picture_pile->RasterToBitmap(
&canvas, quad->content_rect, quad->contents_scale, NULL);
uint8_t* bitmap_pixels = NULL;
SkBitmap on_demand_tile_raster_bitmap_dest;
SkBitmap::Config config = SkBitmapConfig(quad->texture_format);
if (on_demand_tile_raster_bitmap_.getConfig() != config) {
on_demand_tile_raster_bitmap_.copyTo(&on_demand_tile_raster_bitmap_dest,
config);
// TODO(kaanb): The GL pipeline assumes a 4-byte alignment for the
// bitmap data. This check will be removed once crbug.com/293728 is fixed.
CHECK_EQ(0u, on_demand_tile_raster_bitmap_dest.rowBytes() % 4);
bitmap_pixels = reinterpret_cast<uint8_t*>(
on_demand_tile_raster_bitmap_dest.getPixels());
} else {
bitmap_pixels =
reinterpret_cast<uint8_t*>(on_demand_tile_raster_bitmap_.getPixels());
}
resource_provider_->SetPixels(on_demand_tile_raster_resource_id_,
bitmap_pixels,
gfx::Rect(quad->texture_size),
gfx::Rect(quad->texture_size),
gfx::Vector2d());
DrawContentQuad(frame, quad, on_demand_tile_raster_resource_id_);
}
struct TextureProgramBinding {
template <class Program>
void Set(Program* program) {
DCHECK(program);
program_id = program->program();
sampler_location = program->fragment_shader().sampler_location();
matrix_location = program->vertex_shader().matrix_location();
background_color_location =
program->fragment_shader().background_color_location();
}
int program_id;
int sampler_location;
int matrix_location;
int background_color_location;
};
struct TexTransformTextureProgramBinding : TextureProgramBinding {
template <class Program>
void Set(Program* program) {
TextureProgramBinding::Set(program);
tex_transform_location = program->vertex_shader().tex_transform_location();
vertex_opacity_location =
program->vertex_shader().vertex_opacity_location();
}
int tex_transform_location;
int vertex_opacity_location;
};
void GLRenderer::FlushTextureQuadCache() {
// Check to see if we have anything to draw.
if (draw_cache_.program_id == 0)
return;
// Set the correct blending mode.
SetBlendEnabled(draw_cache_.needs_blending);
// Bind the program to the GL state.
SetUseProgram(draw_cache_.program_id);
// Bind the correct texture sampler location.
GLC(gl_, gl_->Uniform1i(draw_cache_.sampler_location, 0));
// Assume the current active textures is 0.
ResourceProvider::ScopedReadLockGL locked_quad(resource_provider_,
draw_cache_.resource_id);
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, locked_quad.texture_id()));
COMPILE_ASSERT(sizeof(Float4) == 4 * sizeof(float), // NOLINT(runtime/sizeof)
struct_is_densely_packed);
COMPILE_ASSERT(
sizeof(Float16) == 16 * sizeof(float), // NOLINT(runtime/sizeof)
struct_is_densely_packed);
// Upload the tranforms for both points and uvs.
GLC(gl_,
gl_->UniformMatrix4fv(
static_cast<int>(draw_cache_.matrix_location),
static_cast<int>(draw_cache_.matrix_data.size()),
false,
reinterpret_cast<float*>(&draw_cache_.matrix_data.front())));
GLC(gl_,
gl_->Uniform4fv(
static_cast<int>(draw_cache_.uv_xform_location),
static_cast<int>(draw_cache_.uv_xform_data.size()),
reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front())));
if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
Float4 background_color = PremultipliedColor(draw_cache_.background_color);
GLC(gl_,
gl_->Uniform4fv(
draw_cache_.background_color_location, 1, background_color.data));
}
GLC(gl_,
gl_->Uniform1fv(
static_cast<int>(draw_cache_.vertex_opacity_location),
static_cast<int>(draw_cache_.vertex_opacity_data.size()),
static_cast<float*>(&draw_cache_.vertex_opacity_data.front())));
// Draw the quads!
GLC(gl_,
gl_->DrawElements(GL_TRIANGLES,
6 * draw_cache_.matrix_data.size(),
GL_UNSIGNED_SHORT,
0));
// Clear the cache.
draw_cache_.program_id = 0;
draw_cache_.uv_xform_data.resize(0);
draw_cache_.vertex_opacity_data.resize(0);
draw_cache_.matrix_data.resize(0);
}
void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame,
const TextureDrawQuad* quad) {
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
// Choose the correct texture program binding
TexTransformTextureProgramBinding binding;
if (quad->premultiplied_alpha) {
if (quad->background_color == SK_ColorTRANSPARENT) {
binding.Set(GetTextureProgram(tex_coord_precision));
} else {
binding.Set(GetTextureBackgroundProgram(tex_coord_precision));
}
} else {
if (quad->background_color == SK_ColorTRANSPARENT) {
binding.Set(GetNonPremultipliedTextureProgram(tex_coord_precision));
} else {
binding.Set(
GetNonPremultipliedTextureBackgroundProgram(tex_coord_precision));
}
}
int resource_id = quad->resource_id;
if (draw_cache_.program_id != binding.program_id ||
draw_cache_.resource_id != resource_id ||
draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
draw_cache_.background_color != quad->background_color ||
draw_cache_.matrix_data.size() >= 8) {
FlushTextureQuadCache();
draw_cache_.program_id = binding.program_id;
draw_cache_.resource_id = resource_id;
draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
draw_cache_.background_color = quad->background_color;
draw_cache_.uv_xform_location = binding.tex_transform_location;
draw_cache_.background_color_location = binding.background_color_location;
draw_cache_.vertex_opacity_location = binding.vertex_opacity_location;
draw_cache_.matrix_location = binding.matrix_location;
draw_cache_.sampler_location = binding.sampler_location;
}
// Generate the uv-transform
draw_cache_.uv_xform_data.push_back(UVTransform(quad));
// Generate the vertex opacity
const float opacity = quad->opacity();
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
// Generate the transform matrix
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
quad_rect_matrix = frame->projection_matrix * quad_rect_matrix;
Float16 m;
quad_rect_matrix.matrix().asColMajorf(m.data);
draw_cache_.matrix_data.push_back(m);
}
void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame,
const IOSurfaceDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
TexTransformTextureProgramBinding binding;
binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision));
SetUseProgram(binding.program_id);
GLC(gl_, gl_->Uniform1i(binding.sampler_location, 0));
if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) {
GLC(gl_,
gl_->Uniform4f(binding.tex_transform_location,
0,
quad->io_surface_size.height(),
quad->io_surface_size.width(),
quad->io_surface_size.height() * -1.0f));
} else {
GLC(gl_,
gl_->Uniform4f(binding.tex_transform_location,
0,
0,
quad->io_surface_size.width(),
quad->io_surface_size.height()));
}
const float vertex_opacity[] = {quad->opacity(), quad->opacity(),
quad->opacity(), quad->opacity()};
GLC(gl_, gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity));
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->io_surface_resource_id);
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id()));
DrawQuadGeometry(
frame, quad->quadTransform(), quad->rect, binding.matrix_location);
GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0));
}
void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) {
current_framebuffer_lock_.reset();
swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect));
GLC(gl_, gl_->Disable(GL_BLEND));
blend_shadow_ = false;
}
void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(); }
bool GLRenderer::FlippedFramebuffer() const { return true; }
void GLRenderer::EnsureScissorTestEnabled() {
if (is_scissor_enabled_)
return;
FlushTextureQuadCache();
GLC(gl_, gl_->Enable(GL_SCISSOR_TEST));
is_scissor_enabled_ = true;
}
void GLRenderer::EnsureScissorTestDisabled() {
if (!is_scissor_enabled_)
return;
FlushTextureQuadCache();
GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
is_scissor_enabled_ = false;
}
void GLRenderer::CopyCurrentRenderPassToBitmap(
DrawingFrame* frame,
scoped_ptr<CopyOutputRequest> request) {
gfx::Rect copy_rect = frame->current_render_pass->output_rect;
if (request->has_area())
copy_rect.Intersect(request->area());
GetFramebufferPixelsAsync(copy_rect, request.Pass());
}
void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
transform.matrix().asColMajorf(gl_matrix);
}
void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) {
if (quad_location == -1)
return;
float gl_quad[8];
gl_quad[0] = quad.p1().x();
gl_quad[1] = quad.p1().y();
gl_quad[2] = quad.p2().x();
gl_quad[3] = quad.p2().y();
gl_quad[4] = quad.p3().x();
gl_quad[5] = quad.p3().y();
gl_quad[6] = quad.p4().x();
gl_quad[7] = quad.p4().y();
GLC(gl_, gl_->Uniform2fv(quad_location, 4, gl_quad));
}
void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) {
if (alpha_location != -1)
GLC(gl_, gl_->Uniform1f(alpha_location, opacity));
}
void GLRenderer::SetStencilEnabled(bool enabled) {
if (enabled == stencil_shadow_)
return;
if (enabled)
GLC(gl_, gl_->Enable(GL_STENCIL_TEST));
else
GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
stencil_shadow_ = enabled;
}
void GLRenderer::SetBlendEnabled(bool enabled) {
if (enabled == blend_shadow_)
return;
if (enabled)
GLC(gl_, gl_->Enable(GL_BLEND));
else
GLC(gl_, gl_->Disable(GL_BLEND));
blend_shadow_ = enabled;
}
void GLRenderer::SetUseProgram(unsigned program) {
if (program == program_shadow_)
return;
gl_->UseProgram(program);
program_shadow_ = program;
}
void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame,
const gfx::Transform& draw_transform,
const gfx::RectF& quad_rect,
int matrix_location) {
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect);
static float gl_matrix[16];
ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix);
GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0]));
GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0));
}
void GLRenderer::CopyTextureToFramebuffer(const DrawingFrame* frame,
int texture_id,
const gfx::Rect& rect,
const gfx::Transform& draw_matrix,
bool flip_vertically) {
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, rect.bottom_right());
const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
if (flip_vertically) {
GLC(gl_,
gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
0.f,
1.f,
1.f,
-1.f));
} else {
GLC(gl_,
gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
0.f,
0.f,
1.f,
1.f));
}
SetShaderOpacity(1.f, program->fragment_shader().alpha_location());
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
DrawQuadGeometry(
frame, draw_matrix, rect, program->vertex_shader().matrix_location());
}
void GLRenderer::Finish() {
TRACE_EVENT0("cc", "GLRenderer::Finish");
GLC(gl_, gl_->Finish());
}
void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) {
DCHECK(!is_backbuffer_discarded_);
TRACE_EVENT0("cc", "GLRenderer::SwapBuffers");
// We're done! Time to swapbuffers!
gfx::Size surface_size = output_surface_->SurfaceSize();
CompositorFrame compositor_frame;
compositor_frame.metadata = metadata;
compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData);
compositor_frame.gl_frame_data->size = surface_size;
if (capabilities_.using_partial_swap) {
// If supported, we can save significant bandwidth by only swapping the
// damaged/scissored region (clamped to the viewport).
swap_buffer_rect_.Intersect(gfx::Rect(surface_size));
int flipped_y_pos_of_rect_bottom = surface_size.height() -
swap_buffer_rect_.y() -
swap_buffer_rect_.height();
compositor_frame.gl_frame_data->sub_buffer_rect =
gfx::Rect(swap_buffer_rect_.x(),
flipped_y_pos_of_rect_bottom,
swap_buffer_rect_.width(),
swap_buffer_rect_.height());
} else {
compositor_frame.gl_frame_data->sub_buffer_rect =
gfx::Rect(output_surface_->SurfaceSize());
}
output_surface_->SwapBuffers(&compositor_frame);
swap_buffer_rect_ = gfx::Rect();
// We don't have real fences, so we mark read fences as passed
// assuming a double-buffered GPU pipeline. A texture can be
// written to after one full frame has past since it was last read.
if (last_swap_fence_.get())
static_cast<SimpleSwapFence*>(last_swap_fence_.get())->SetHasPassed();
last_swap_fence_ = resource_provider_->GetReadLockFence();
resource_provider_->SetReadLockFence(new SimpleSwapFence());
}
void GLRenderer::EnforceMemoryPolicy() {
if (!visible_) {
TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources");
ReleaseRenderPassTextures();
DiscardBackbuffer();
resource_provider_->ReleaseCachedData();
GLC(gl_, gl_->Flush());
}
}
void GLRenderer::DiscardBackbuffer() {
if (is_backbuffer_discarded_)
return;
output_surface_->DiscardBackbuffer();
is_backbuffer_discarded_ = true;
// Damage tracker needs a full reset every time framebuffer is discarded.
client_->SetFullRootLayerDamage();
}
void GLRenderer::EnsureBackbuffer() {
if (!is_backbuffer_discarded_)
return;
output_surface_->EnsureBackbuffer();
is_backbuffer_discarded_ = false;
}
void GLRenderer::GetFramebufferPixels(void* pixels, const gfx::Rect& rect) {
if (!pixels || rect.IsEmpty())
return;
// This function assumes that it is reading the root frame buffer.
DCHECK(!current_framebuffer_lock_);
scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
pending_read.Pass());
// This is a syncronous call since the callback is null.
gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
DoGetFramebufferPixels(static_cast<uint8*>(pixels),
window_rect,
AsyncGetFramebufferPixelsCleanupCallback());
}
void GLRenderer::GetFramebufferPixelsAsync(
const gfx::Rect& rect,
scoped_ptr<CopyOutputRequest> request) {
DCHECK(!request->IsEmpty());
if (request->IsEmpty())
return;
if (rect.IsEmpty())
return;
gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
if (!request->force_bitmap_result()) {
bool own_mailbox = !request->has_texture_mailbox();
GLuint texture_id = 0;
gl_->GenTextures(1, &texture_id);
gpu::Mailbox mailbox;
if (own_mailbox) {
GLC(gl_, gl_->GenMailboxCHROMIUM(mailbox.name));
if (mailbox.IsZero()) {
gl_->DeleteTextures(1, &texture_id);
request->SendEmptyResult();
return;
}
} else {
mailbox = request->texture_mailbox().name();
DCHECK_EQ(static_cast<unsigned>(GL_TEXTURE_2D),
request->texture_mailbox().target());
DCHECK(!mailbox.IsZero());
unsigned incoming_sync_point = request->texture_mailbox().sync_point();
if (incoming_sync_point)
GLC(gl_, gl_->WaitSyncPointCHROMIUM(incoming_sync_point));
}
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
if (own_mailbox) {
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(
GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLC(gl_,
gl_->TexParameteri(
GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GLC(gl_, gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
} else {
GLC(gl_, gl_->ConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
}
GetFramebufferTexture(texture_id, RGBA_8888, window_rect);
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
unsigned sync_point = gl_->InsertSyncPointCHROMIUM();
TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point);
scoped_ptr<SingleReleaseCallback> release_callback;
if (own_mailbox) {
release_callback = texture_mailbox_deleter_->GetReleaseCallback(
output_surface_->context_provider(), texture_id);
} else {
gl_->DeleteTextures(1, &texture_id);
}
request->SendTextureResult(
window_rect.size(), texture_mailbox, release_callback.Pass());
return;
}
DCHECK(request->force_bitmap_result());
scoped_ptr<SkBitmap> bitmap(new SkBitmap);
bitmap->setConfig(
SkBitmap::kARGB_8888_Config, window_rect.width(), window_rect.height());
bitmap->allocPixels();
scoped_ptr<SkAutoLockPixels> lock(new SkAutoLockPixels(*bitmap));
// Save a pointer to the pixels, the bitmap is owned by the cleanup_callback.
uint8* pixels = static_cast<uint8*>(bitmap->getPixels());
AsyncGetFramebufferPixelsCleanupCallback cleanup_callback =
base::Bind(&GLRenderer::PassOnSkBitmap,
base::Unretained(this),
base::Passed(&bitmap),
base::Passed(&lock));
scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
pending_read->copy_request = request.Pass();
pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
pending_read.Pass());
// This is an asyncronous call since the callback is not null.
DoGetFramebufferPixels(pixels, window_rect, cleanup_callback);
}
void GLRenderer::DoGetFramebufferPixels(
uint8* dest_pixels,
const gfx::Rect& window_rect,
const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback) {
DCHECK_GE(window_rect.x(), 0);
DCHECK_GE(window_rect.y(), 0);
DCHECK_LE(window_rect.right(), current_surface_size_.width());
DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
bool is_async = !cleanup_callback.is_null();
bool do_workaround = NeedsIOSurfaceReadbackWorkaround();
unsigned temporary_texture = 0;
unsigned temporary_fbo = 0;
if (do_workaround) {
// On Mac OS X, calling glReadPixels() against an FBO whose color attachment
// is an IOSurface-backed texture causes corruption of future glReadPixels()
// calls, even those on different OpenGL contexts. It is believed that this
// is the root cause of top crasher
// http://crbug.com/99393. <rdar://problem/10949687>
gl_->GenTextures(1, &temporary_texture);
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, temporary_texture));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
// Copy the contents of the current (IOSurface-backed) framebuffer into a
// temporary texture.
GetFramebufferTexture(
temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_));
gl_->GenFramebuffers(1, &temporary_fbo);
// Attach this texture to an FBO, and perform the readback from that FBO.
GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo));
GLC(gl_,
gl_->FramebufferTexture2D(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D,
temporary_texture,
0));
DCHECK_EQ(static_cast<unsigned>(GL_FRAMEBUFFER_COMPLETE),
gl_->CheckFramebufferStatus(GL_FRAMEBUFFER));
}
GLuint buffer = 0;
gl_->GenBuffers(1, &buffer);
GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer));
GLC(gl_,
gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM,
4 * window_rect.size().GetArea(),
NULL,
GL_STREAM_READ));
GLuint query = 0;
if (is_async) {
gl_->GenQueriesEXT(1, &query);
GLC(gl_, gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query));
}
GLC(gl_,
gl_->ReadPixels(window_rect.x(),
window_rect.y(),
window_rect.width(),
window_rect.height(),
GL_RGBA,
GL_UNSIGNED_BYTE,
NULL));
GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
if (do_workaround) {
// Clean up.
GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
GLC(gl_, gl_->DeleteFramebuffers(1, &temporary_fbo));
GLC(gl_, gl_->DeleteTextures(1, &temporary_texture));
}
base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback,
base::Unretained(this),
cleanup_callback,
buffer,
query,
dest_pixels,
window_rect.size());
// Save the finished_callback so it can be cancelled.
pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset(
finished_callback);
base::Closure cancelable_callback =
pending_async_read_pixels_.front()->
finished_read_pixels_callback.callback();
// Save the buffer to verify the callbacks happen in the expected order.
pending_async_read_pixels_.front()->buffer = buffer;
if (is_async) {
GLC(gl_, gl_->EndQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM));
context_support_->SignalQuery(query, cancelable_callback);
} else {
resource_provider_->Finish();
finished_callback.Run();
}
EnforceMemoryPolicy();
}
void GLRenderer::FinishedReadback(
const AsyncGetFramebufferPixelsCleanupCallback& cleanup_callback,
unsigned source_buffer,
unsigned query,
uint8* dest_pixels,
gfx::Size size) {
DCHECK(!pending_async_read_pixels_.empty());
if (query != 0) {
GLC(gl_, gl_->DeleteQueriesEXT(1, &query));
}
PendingAsyncReadPixels* current_read = pending_async_read_pixels_.back();
// Make sure we service the readbacks in order.
DCHECK_EQ(source_buffer, current_read->buffer);
uint8* src_pixels = NULL;
if (source_buffer != 0) {
GLC(gl_,
gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer));
src_pixels = static_cast<uint8*>(gl_->MapBufferCHROMIUM(
GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY));
if (src_pixels) {
size_t row_bytes = size.width() * 4;
int num_rows = size.height();
size_t total_bytes = num_rows * row_bytes;
for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) {
// Flip Y axis.
size_t src_y = total_bytes - dest_y - row_bytes;
// Swizzle OpenGL -> Skia byte order.
for (size_t x = 0; x < row_bytes; x += 4) {
dest_pixels[dest_y + x + SK_R32_SHIFT / 8] =
src_pixels[src_y + x + 0];
dest_pixels[dest_y + x + SK_G32_SHIFT / 8] =
src_pixels[src_y + x + 1];
dest_pixels[dest_y + x + SK_B32_SHIFT / 8] =
src_pixels[src_y + x + 2];
dest_pixels[dest_y + x + SK_A32_SHIFT / 8] =
src_pixels[src_y + x + 3];
}
}
GLC(gl_,
gl_->UnmapBufferCHROMIUM(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM));
}
GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
GLC(gl_, gl_->DeleteBuffers(1, &source_buffer));
}
// TODO(danakj): This can go away when synchronous readback is no more and its
// contents can just move here.
if (!cleanup_callback.is_null())
cleanup_callback.Run(current_read->copy_request.Pass(), src_pixels != NULL);
pending_async_read_pixels_.pop_back();
}
void GLRenderer::PassOnSkBitmap(scoped_ptr<SkBitmap> bitmap,
scoped_ptr<SkAutoLockPixels> lock,
scoped_ptr<CopyOutputRequest> request,
bool success) {
DCHECK(request->force_bitmap_result());
lock.reset();
if (success)
request->SendBitmapResult(bitmap.Pass());
}
void GLRenderer::GetFramebufferTexture(unsigned texture_id,
ResourceFormat texture_format,
const gfx::Rect& window_rect) {
DCHECK(texture_id);
DCHECK_GE(window_rect.x(), 0);
DCHECK_GE(window_rect.y(), 0);
DCHECK_LE(window_rect.right(), current_surface_size_.width());
DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
GLC(gl_,
gl_->CopyTexImage2D(GL_TEXTURE_2D,
0,
GLDataFormat(texture_format),
window_rect.x(),
window_rect.y(),
window_rect.width(),
window_rect.height(),
0));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
}
bool GLRenderer::UseScopedTexture(DrawingFrame* frame,
const ScopedResource* texture,
const gfx::Rect& viewport_rect) {
DCHECK(texture->id());
frame->current_render_pass = NULL;
frame->current_texture = texture;
return BindFramebufferToTexture(frame, texture, viewport_rect);
}
void GLRenderer::BindFramebufferToOutputSurface(DrawingFrame* frame) {
current_framebuffer_lock_.reset();
output_surface_->BindFramebuffer();
if (output_surface_->HasExternalStencilTest()) {
SetStencilEnabled(true);
GLC(gl_, gl_->StencilFunc(GL_EQUAL, 1, 1));
} else {
SetStencilEnabled(false);
}
}
bool GLRenderer::BindFramebufferToTexture(DrawingFrame* frame,
const ScopedResource* texture,
const gfx::Rect& target_rect) {
DCHECK(texture->id());
current_framebuffer_lock_.reset();
SetStencilEnabled(false);
GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, offscreen_framebuffer_id_));
current_framebuffer_lock_ =
make_scoped_ptr(new ResourceProvider::ScopedWriteLockGL(
resource_provider_, texture->id()));
unsigned texture_id = current_framebuffer_lock_->texture_id();
GLC(gl_,
gl_->FramebufferTexture2D(
GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0));
DCHECK(gl_->CheckFramebufferStatus(GL_FRAMEBUFFER) ==
GL_FRAMEBUFFER_COMPLETE ||
IsContextLost());
InitializeViewport(
frame, target_rect, gfx::Rect(target_rect.size()), target_rect.size());
return true;
}
void GLRenderer::SetScissorTestRect(const gfx::Rect& scissor_rect) {
EnsureScissorTestEnabled();
// Don't unnecessarily ask the context to change the scissor, because it
// may cause undesired GPU pipeline flushes.
if (scissor_rect == scissor_rect_ && !scissor_rect_needs_reset_)
return;
scissor_rect_ = scissor_rect;
FlushTextureQuadCache();
GLC(gl_,
gl_->Scissor(scissor_rect.x(),
scissor_rect.y(),
scissor_rect.width(),
scissor_rect.height()));
scissor_rect_needs_reset_ = false;
}
void GLRenderer::SetDrawViewport(const gfx::Rect& window_space_viewport) {
viewport_ = window_space_viewport;
GLC(gl_,
gl_->Viewport(window_space_viewport.x(),
window_space_viewport.y(),
window_space_viewport.width(),
window_space_viewport.height()));
}
void GLRenderer::InitializeSharedObjects() {
TRACE_EVENT0("cc", "GLRenderer::InitializeSharedObjects");
// Create an FBO for doing offscreen rendering.
GLC(gl_, gl_->GenFramebuffers(1, &offscreen_framebuffer_id_));
shared_geometry_ = make_scoped_ptr(
new GeometryBinding(gl_, QuadVertexRect()));
}
const GLRenderer::TileCheckerboardProgram*
GLRenderer::GetTileCheckerboardProgram() {
if (!tile_checkerboard_program_.initialized()) {
TRACE_EVENT0("cc", "GLRenderer::checkerboardProgram::initalize");
tile_checkerboard_program_.Initialize(output_surface_->context_provider(),
TexCoordPrecisionNA,
SamplerTypeNA);
}
return &tile_checkerboard_program_;
}
const GLRenderer::DebugBorderProgram* GLRenderer::GetDebugBorderProgram() {
if (!debug_border_program_.initialized()) {
TRACE_EVENT0("cc", "GLRenderer::debugBorderProgram::initialize");
debug_border_program_.Initialize(output_surface_->context_provider(),
TexCoordPrecisionNA,
SamplerTypeNA);
}
return &debug_border_program_;
}
const GLRenderer::SolidColorProgram* GLRenderer::GetSolidColorProgram() {
if (!solid_color_program_.initialized()) {
TRACE_EVENT0("cc", "GLRenderer::solidColorProgram::initialize");
solid_color_program_.Initialize(output_surface_->context_provider(),
TexCoordPrecisionNA,
SamplerTypeNA);
}
return &solid_color_program_;
}
const GLRenderer::SolidColorProgramAA* GLRenderer::GetSolidColorProgramAA() {
if (!solid_color_program_aa_.initialized()) {
TRACE_EVENT0("cc", "GLRenderer::solidColorProgramAA::initialize");
solid_color_program_aa_.Initialize(output_surface_->context_provider(),
TexCoordPrecisionNA,
SamplerTypeNA);
}
return &solid_color_program_aa_;
}
const GLRenderer::RenderPassProgram* GLRenderer::GetRenderPassProgram(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassProgram* program = &render_pass_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::renderPassProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::RenderPassProgramAA* GLRenderer::GetRenderPassProgramAA(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassProgramAA* program = &render_pass_program_aa_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::renderPassProgramAA::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::RenderPassMaskProgram* GLRenderer::GetRenderPassMaskProgram(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassMaskProgram* program = &render_pass_mask_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::RenderPassMaskProgramAA*
GLRenderer::GetRenderPassMaskProgramAA(TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassMaskProgramAA* program = &render_pass_mask_program_aa_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::renderPassMaskProgramAA::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::RenderPassColorMatrixProgram*
GLRenderer::GetRenderPassColorMatrixProgram(TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassColorMatrixProgram* program =
&render_pass_color_matrix_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::renderPassColorMatrixProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::RenderPassColorMatrixProgramAA*
GLRenderer::GetRenderPassColorMatrixProgramAA(TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassColorMatrixProgramAA* program =
&render_pass_color_matrix_program_aa_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc",
"GLRenderer::renderPassColorMatrixProgramAA::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::RenderPassMaskColorMatrixProgram*
GLRenderer::GetRenderPassMaskColorMatrixProgram(TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassMaskColorMatrixProgram* program =
&render_pass_mask_color_matrix_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc",
"GLRenderer::renderPassMaskColorMatrixProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::RenderPassMaskColorMatrixProgramAA*
GLRenderer::GetRenderPassMaskColorMatrixProgramAA(TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
RenderPassMaskColorMatrixProgramAA* program =
&render_pass_mask_color_matrix_program_aa_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc",
"GLRenderer::renderPassMaskColorMatrixProgramAA::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::TileProgram* GLRenderer::GetTileProgram(
TexCoordPrecision precision,
SamplerType sampler) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
DCHECK_GE(sampler, 0);
DCHECK_LT(sampler, NumSamplerTypes);
TileProgram* program = &tile_program_[precision][sampler];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::tileProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, sampler);
}
return program;
}
const GLRenderer::TileProgramOpaque* GLRenderer::GetTileProgramOpaque(
TexCoordPrecision precision,
SamplerType sampler) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
DCHECK_GE(sampler, 0);
DCHECK_LT(sampler, NumSamplerTypes);
TileProgramOpaque* program = &tile_program_opaque_[precision][sampler];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::tileProgramOpaque::initialize");
program->Initialize(
output_surface_->context_provider(), precision, sampler);
}
return program;
}
const GLRenderer::TileProgramAA* GLRenderer::GetTileProgramAA(
TexCoordPrecision precision,
SamplerType sampler) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
DCHECK_GE(sampler, 0);
DCHECK_LT(sampler, NumSamplerTypes);
TileProgramAA* program = &tile_program_aa_[precision][sampler];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::tileProgramAA::initialize");
program->Initialize(
output_surface_->context_provider(), precision, sampler);
}
return program;
}
const GLRenderer::TileProgramSwizzle* GLRenderer::GetTileProgramSwizzle(
TexCoordPrecision precision,
SamplerType sampler) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
DCHECK_GE(sampler, 0);
DCHECK_LT(sampler, NumSamplerTypes);
TileProgramSwizzle* program = &tile_program_swizzle_[precision][sampler];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzle::initialize");
program->Initialize(
output_surface_->context_provider(), precision, sampler);
}
return program;
}
const GLRenderer::TileProgramSwizzleOpaque*
GLRenderer::GetTileProgramSwizzleOpaque(TexCoordPrecision precision,
SamplerType sampler) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
DCHECK_GE(sampler, 0);
DCHECK_LT(sampler, NumSamplerTypes);
TileProgramSwizzleOpaque* program =
&tile_program_swizzle_opaque_[precision][sampler];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleOpaque::initialize");
program->Initialize(
output_surface_->context_provider(), precision, sampler);
}
return program;
}
const GLRenderer::TileProgramSwizzleAA* GLRenderer::GetTileProgramSwizzleAA(
TexCoordPrecision precision,
SamplerType sampler) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
DCHECK_GE(sampler, 0);
DCHECK_LT(sampler, NumSamplerTypes);
TileProgramSwizzleAA* program = &tile_program_swizzle_aa_[precision][sampler];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::tileProgramSwizzleAA::initialize");
program->Initialize(
output_surface_->context_provider(), precision, sampler);
}
return program;
}
const GLRenderer::TextureProgram* GLRenderer::GetTextureProgram(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
TextureProgram* program = &texture_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::NonPremultipliedTextureProgram*
GLRenderer::GetNonPremultipliedTextureProgram(TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
NonPremultipliedTextureProgram* program =
&nonpremultiplied_texture_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc",
"GLRenderer::NonPremultipliedTextureProgram::Initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::TextureBackgroundProgram*
GLRenderer::GetTextureBackgroundProgram(TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
TextureBackgroundProgram* program = &texture_background_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::textureProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::NonPremultipliedTextureBackgroundProgram*
GLRenderer::GetNonPremultipliedTextureBackgroundProgram(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
NonPremultipliedTextureBackgroundProgram* program =
&nonpremultiplied_texture_background_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc",
"GLRenderer::NonPremultipliedTextureProgram::Initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::TextureProgram* GLRenderer::GetTextureIOSurfaceProgram(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
TextureProgram* program = &texture_io_surface_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::textureIOSurfaceProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2DRect);
}
return program;
}
const GLRenderer::VideoYUVProgram* GLRenderer::GetVideoYUVProgram(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
VideoYUVProgram* program = &video_yuv_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::videoYUVProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::VideoYUVAProgram* GLRenderer::GetVideoYUVAProgram(
TexCoordPrecision precision) {
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
VideoYUVAProgram* program = &video_yuva_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::videoYUVAProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerType2D);
}
return program;
}
const GLRenderer::VideoStreamTextureProgram*
GLRenderer::GetVideoStreamTextureProgram(TexCoordPrecision precision) {
if (!Capabilities().using_egl_image)
return NULL;
DCHECK_GE(precision, 0);
DCHECK_LT(precision, NumTexCoordPrecisions);
VideoStreamTextureProgram* program =
&video_stream_texture_program_[precision];
if (!program->initialized()) {
TRACE_EVENT0("cc", "GLRenderer::streamTextureProgram::initialize");
program->Initialize(
output_surface_->context_provider(), precision, SamplerTypeExternalOES);
}
return program;
}
void GLRenderer::CleanupSharedObjects() {
shared_geometry_.reset();
for (int i = 0; i < NumTexCoordPrecisions; ++i) {
for (int j = 0; j < NumSamplerTypes; ++j) {
tile_program_[i][j].Cleanup(gl_);
tile_program_opaque_[i][j].Cleanup(gl_);
tile_program_swizzle_[i][j].Cleanup(gl_);
tile_program_swizzle_opaque_[i][j].Cleanup(gl_);
tile_program_aa_[i][j].Cleanup(gl_);
tile_program_swizzle_aa_[i][j].Cleanup(gl_);
}
render_pass_mask_program_[i].Cleanup(gl_);
render_pass_program_[i].Cleanup(gl_);
render_pass_mask_program_aa_[i].Cleanup(gl_);
render_pass_program_aa_[i].Cleanup(gl_);
render_pass_color_matrix_program_[i].Cleanup(gl_);
render_pass_mask_color_matrix_program_aa_[i].Cleanup(gl_);
render_pass_color_matrix_program_aa_[i].Cleanup(gl_);
render_pass_mask_color_matrix_program_[i].Cleanup(gl_);
texture_program_[i].Cleanup(gl_);
nonpremultiplied_texture_program_[i].Cleanup(gl_);
texture_background_program_[i].Cleanup(gl_);
nonpremultiplied_texture_background_program_[i].Cleanup(gl_);
texture_io_surface_program_[i].Cleanup(gl_);
video_yuv_program_[i].Cleanup(gl_);
video_yuva_program_[i].Cleanup(gl_);
video_stream_texture_program_[i].Cleanup(gl_);
}
tile_checkerboard_program_.Cleanup(gl_);
debug_border_program_.Cleanup(gl_);
solid_color_program_.Cleanup(gl_);
solid_color_program_aa_.Cleanup(gl_);
if (offscreen_framebuffer_id_)
GLC(gl_, gl_->DeleteFramebuffers(1, &offscreen_framebuffer_id_));
if (on_demand_tile_raster_resource_id_)
resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
ReleaseRenderPassTextures();
}
void GLRenderer::ReinitializeGLState() {
// Bind the common vertex attributes used for drawing all the layers.
shared_geometry_->PrepareForDraw();
GLC(gl_, gl_->Disable(GL_DEPTH_TEST));
GLC(gl_, gl_->Disable(GL_CULL_FACE));
GLC(gl_, gl_->ColorMask(true, true, true, true));
GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
stencil_shadow_ = false;
GLC(gl_, gl_->Enable(GL_BLEND));
blend_shadow_ = true;
GLC(gl_, gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
GLC(gl_, gl_->ActiveTexture(GL_TEXTURE0));
program_shadow_ = 0;
// Make sure scissoring starts as disabled.
is_scissor_enabled_ = false;
GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
scissor_rect_needs_reset_ = true;
}
bool GLRenderer::IsContextLost() {
return output_surface_->context_provider()->IsContextLost();
}
} // namespace cc
|