summaryrefslogtreecommitdiffstats
path: root/cc/resources/tile_manager.cc
blob: 41286501cbceb7cc893f21a775eadd2d4cf865e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/resources/tile_manager.h"

#include <algorithm>
#include <limits>
#include <string>

#include "base/bind.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "cc/debug/devtools_instrumentation.h"
#include "cc/debug/frame_viewer_instrumentation.h"
#include "cc/debug/traced_value.h"
#include "cc/layers/picture_layer_impl.h"
#include "cc/resources/raster_worker_pool.h"
#include "cc/resources/rasterizer_delegate.h"
#include "cc/resources/tile.h"
#include "skia/ext/paint_simplifier.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkPixelRef.h"
#include "ui/gfx/rect_conversions.h"

namespace cc {
namespace {

// Flag to indicate whether we should try and detect that
// a tile is of solid color.
const bool kUseColorEstimator = true;

// Minimum width/height of a pile that would require analysis for tiles.
const int kMinDimensionsForAnalysis = 256;

class DisableLCDTextFilter : public SkDrawFilter {
 public:
  // SkDrawFilter interface.
  virtual bool filter(SkPaint* paint, SkDrawFilter::Type type) OVERRIDE {
    if (type != SkDrawFilter::kText_Type)
      return true;

    paint->setLCDRenderText(false);
    return true;
  }
};

class RasterTaskImpl : public RasterTask {
 public:
  RasterTaskImpl(
      const Resource* resource,
      PicturePileImpl* picture_pile,
      const gfx::Rect& content_rect,
      float contents_scale,
      RasterMode raster_mode,
      TileResolution tile_resolution,
      int layer_id,
      const void* tile_id,
      int source_frame_number,
      bool analyze_picture,
      RenderingStatsInstrumentation* rendering_stats,
      const base::Callback<void(const PicturePileImpl::Analysis&, bool)>& reply,
      ImageDecodeTask::Vector* dependencies)
      : RasterTask(resource, dependencies),
        picture_pile_(picture_pile),
        content_rect_(content_rect),
        contents_scale_(contents_scale),
        raster_mode_(raster_mode),
        tile_resolution_(tile_resolution),
        layer_id_(layer_id),
        tile_id_(tile_id),
        source_frame_number_(source_frame_number),
        analyze_picture_(analyze_picture),
        rendering_stats_(rendering_stats),
        reply_(reply),
        canvas_(NULL) {}

  // Overridden from Task:
  virtual void RunOnWorkerThread() OVERRIDE {
    TRACE_EVENT0("cc", "RasterizerTaskImpl::RunOnWorkerThread");

    DCHECK(picture_pile_);
    if (canvas_) {
      AnalyzeAndRaster(picture_pile_->GetCloneForDrawingOnThread(
          RasterWorkerPool::GetPictureCloneIndexForCurrentThread()));
    }
  }

  // Overridden from RasterizerTask:
  virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
    DCHECK(!canvas_);
    canvas_ = client->AcquireCanvasForRaster(this);
  }
  virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {
    canvas_ = NULL;
    client->ReleaseCanvasForRaster(this);
  }
  virtual void RunReplyOnOriginThread() OVERRIDE {
    DCHECK(!canvas_);
    reply_.Run(analysis_, !HasFinishedRunning());
  }

 protected:
  virtual ~RasterTaskImpl() { DCHECK(!canvas_); }

 private:
  void AnalyzeAndRaster(PicturePileImpl* picture_pile) {
    DCHECK(picture_pile);
    DCHECK(canvas_);

    if (analyze_picture_) {
      Analyze(picture_pile);
      if (analysis_.is_solid_color)
        return;
    }

    Raster(picture_pile);
  }

  void Analyze(PicturePileImpl* picture_pile) {
    frame_viewer_instrumentation::ScopedAnalyzeTask analyze_task(
        tile_id_, tile_resolution_, source_frame_number_, layer_id_);

    DCHECK(picture_pile);

    picture_pile->AnalyzeInRect(
        content_rect_, contents_scale_, &analysis_, rendering_stats_);

    // Record the solid color prediction.
    UMA_HISTOGRAM_BOOLEAN("Renderer4.SolidColorTilesAnalyzed",
                          analysis_.is_solid_color);

    // Clear the flag if we're not using the estimator.
    analysis_.is_solid_color &= kUseColorEstimator;
  }

  void Raster(PicturePileImpl* picture_pile) {
    frame_viewer_instrumentation::ScopedRasterTask raster_task(
        tile_id_,
        tile_resolution_,
        source_frame_number_,
        layer_id_,
        raster_mode_);
    devtools_instrumentation::ScopedLayerTask layer_task(
        devtools_instrumentation::kRasterTask, layer_id_);

    skia::RefPtr<SkDrawFilter> draw_filter;
    switch (raster_mode_) {
      case LOW_QUALITY_RASTER_MODE:
        draw_filter = skia::AdoptRef(new skia::PaintSimplifier);
        break;
      case HIGH_QUALITY_NO_LCD_RASTER_MODE:
        draw_filter = skia::AdoptRef(new DisableLCDTextFilter);
        break;
      case HIGH_QUALITY_RASTER_MODE:
        break;
      case NUM_RASTER_MODES:
      default:
        NOTREACHED();
    }
    canvas_->setDrawFilter(draw_filter.get());

    base::TimeDelta prev_rasterize_time =
        rendering_stats_->impl_thread_rendering_stats().rasterize_time;

    // Only record rasterization time for highres tiles, because
    // lowres tiles are not required for activation and therefore
    // introduce noise in the measurement (sometimes they get rasterized
    // before we draw and sometimes they aren't)
    RenderingStatsInstrumentation* stats =
        tile_resolution_ == HIGH_RESOLUTION ? rendering_stats_ : NULL;
    DCHECK(picture_pile);
    picture_pile->RasterToBitmap(
        canvas_, content_rect_, contents_scale_, stats);

    if (rendering_stats_->record_rendering_stats()) {
      base::TimeDelta current_rasterize_time =
          rendering_stats_->impl_thread_rendering_stats().rasterize_time;
      HISTOGRAM_CUSTOM_COUNTS(
          "Renderer4.PictureRasterTimeUS",
          (current_rasterize_time - prev_rasterize_time).InMicroseconds(),
          0,
          100000,
          100);
    }
  }

  PicturePileImpl::Analysis analysis_;
  scoped_refptr<PicturePileImpl> picture_pile_;
  gfx::Rect content_rect_;
  float contents_scale_;
  RasterMode raster_mode_;
  TileResolution tile_resolution_;
  int layer_id_;
  const void* tile_id_;
  int source_frame_number_;
  bool analyze_picture_;
  RenderingStatsInstrumentation* rendering_stats_;
  const base::Callback<void(const PicturePileImpl::Analysis&, bool)> reply_;
  SkCanvas* canvas_;

  DISALLOW_COPY_AND_ASSIGN(RasterTaskImpl);
};

class ImageDecodeTaskImpl : public ImageDecodeTask {
 public:
  ImageDecodeTaskImpl(SkPixelRef* pixel_ref,
                      int layer_id,
                      RenderingStatsInstrumentation* rendering_stats,
                      const base::Callback<void(bool was_canceled)>& reply)
      : pixel_ref_(skia::SharePtr(pixel_ref)),
        layer_id_(layer_id),
        rendering_stats_(rendering_stats),
        reply_(reply) {}

  // Overridden from Task:
  virtual void RunOnWorkerThread() OVERRIDE {
    TRACE_EVENT0("cc", "ImageDecodeTaskImpl::RunOnWorkerThread");

    devtools_instrumentation::ScopedImageDecodeTask image_decode_task(
        pixel_ref_.get());
    // This will cause the image referred to by pixel ref to be decoded.
    pixel_ref_->lockPixels();
    pixel_ref_->unlockPixels();
  }

  // Overridden from RasterizerTask:
  virtual void ScheduleOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
  virtual void CompleteOnOriginThread(RasterizerTaskClient* client) OVERRIDE {}
  virtual void RunReplyOnOriginThread() OVERRIDE {
    reply_.Run(!HasFinishedRunning());
  }

 protected:
  virtual ~ImageDecodeTaskImpl() {}

 private:
  skia::RefPtr<SkPixelRef> pixel_ref_;
  int layer_id_;
  RenderingStatsInstrumentation* rendering_stats_;
  const base::Callback<void(bool was_canceled)> reply_;

  DISALLOW_COPY_AND_ASSIGN(ImageDecodeTaskImpl);
};

const size_t kScheduledRasterTasksLimit = 32u;

// Memory limit policy works by mapping some bin states to the NEVER bin.
const ManagedTileBin kBinPolicyMap[NUM_TILE_MEMORY_LIMIT_POLICIES][NUM_BINS] = {
    // [ALLOW_NOTHING]
    {NEVER_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NEVER_BIN,  // [NOW_BIN]
     NEVER_BIN,  // [SOON_BIN]
     NEVER_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     NEVER_BIN,  // [EVENTUALLY_BIN]
     NEVER_BIN,  // [AT_LAST_AND_ACTIVE_BIN]
     NEVER_BIN,  // [AT_LAST_BIN]
     NEVER_BIN   // [NEVER_BIN]
    },
    // [ALLOW_ABSOLUTE_MINIMUM]
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     NEVER_BIN,                  // [SOON_BIN]
     NEVER_BIN,                  // [EVENTUALLY_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [EVENTUALLY_BIN]
     NEVER_BIN,                  // [AT_LAST_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // [ALLOW_PREPAINT_ONLY]
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     NEVER_BIN,                  // [EVENTUALLY_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [EVENTUALLY_BIN]
     NEVER_BIN,                  // [AT_LAST_AND_ACTIVE_BIN]
     NEVER_BIN,                  // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // [ALLOW_ANYTHING]
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    }};

// Ready to draw works by mapping NOW_BIN to NOW_AND_READY_TO_DRAW_BIN.
const ManagedTileBin kBinReadyToDrawMap[2][NUM_BINS] = {
    // Not ready
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // Ready
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_AND_READY_TO_DRAW_BIN,  // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    }};

// Active works by mapping some bin stats to equivalent _ACTIVE_BIN state.
const ManagedTileBin kBinIsActiveMap[2][NUM_BINS] = {
    // Inactive
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_BIN,             // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_BIN,                // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    },
    // Active
    {NOW_AND_READY_TO_DRAW_BIN,  // [NOW_AND_READY_TO_DRAW_BIN]
     NOW_BIN,                    // [NOW_BIN]
     SOON_BIN,                   // [SOON_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_AND_ACTIVE_BIN]
     EVENTUALLY_AND_ACTIVE_BIN,  // [EVENTUALLY_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_AND_ACTIVE_BIN]
     AT_LAST_AND_ACTIVE_BIN,     // [AT_LAST_BIN]
     NEVER_BIN                   // [NEVER_BIN]
    }};

// Determine bin based on three categories of tiles: things we need now,
// things we need soon, and eventually.
inline ManagedTileBin BinFromTilePriority(const TilePriority& prio) {
  if (prio.priority_bin == TilePriority::NOW)
    return NOW_BIN;

  if (prio.priority_bin == TilePriority::SOON)
    return SOON_BIN;

  if (prio.distance_to_visible == std::numeric_limits<float>::infinity())
    return NEVER_BIN;

  return EVENTUALLY_BIN;
}

}  // namespace

RasterTaskCompletionStats::RasterTaskCompletionStats()
    : completed_count(0u), canceled_count(0u) {}

scoped_ptr<base::Value> RasterTaskCompletionStatsAsValue(
    const RasterTaskCompletionStats& stats) {
  scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
  state->SetInteger("completed_count", stats.completed_count);
  state->SetInteger("canceled_count", stats.canceled_count);
  return state.PassAs<base::Value>();
}

// static
scoped_ptr<TileManager> TileManager::Create(
    TileManagerClient* client,
    ResourcePool* resource_pool,
    Rasterizer* rasterizer,
    Rasterizer* gpu_rasterizer,
    size_t max_raster_usage_bytes,
    bool use_rasterize_on_demand,
    RenderingStatsInstrumentation* rendering_stats_instrumentation) {
  return make_scoped_ptr(new TileManager(client,
                                         resource_pool,
                                         rasterizer,
                                         gpu_rasterizer,
                                         max_raster_usage_bytes,
                                         use_rasterize_on_demand,
                                         rendering_stats_instrumentation));
}

TileManager::TileManager(
    TileManagerClient* client,
    ResourcePool* resource_pool,
    Rasterizer* rasterizer,
    Rasterizer* gpu_rasterizer,
    size_t max_raster_usage_bytes,
    bool use_rasterize_on_demand,
    RenderingStatsInstrumentation* rendering_stats_instrumentation)
    : client_(client),
      resource_pool_(resource_pool),
      prioritized_tiles_dirty_(false),
      all_tiles_that_need_to_be_rasterized_have_memory_(true),
      all_tiles_required_for_activation_have_memory_(true),
      memory_required_bytes_(0),
      memory_nice_to_have_bytes_(0),
      bytes_releasable_(0),
      resources_releasable_(0),
      max_raster_usage_bytes_(max_raster_usage_bytes),
      ever_exceeded_memory_budget_(false),
      rendering_stats_instrumentation_(rendering_stats_instrumentation),
      did_initialize_visible_tile_(false),
      did_check_for_completed_tasks_since_last_schedule_tasks_(true),
      use_rasterize_on_demand_(use_rasterize_on_demand) {
  Rasterizer* rasterizers[NUM_RASTERIZER_TYPES] = {
      rasterizer,      // RASTERIZER_TYPE_DEFAULT
      gpu_rasterizer,  // RASTERIZER_TYPE_GPU
  };
  rasterizer_delegate_ =
      RasterizerDelegate::Create(this, rasterizers, arraysize(rasterizers));
}

TileManager::~TileManager() {
  // Reset global state and manage. This should cause
  // our memory usage to drop to zero.
  global_state_ = GlobalStateThatImpactsTilePriority();

  CleanUpReleasedTiles();
  DCHECK_EQ(0u, tiles_.size());

  RasterTaskQueue empty[NUM_RASTERIZER_TYPES];
  rasterizer_delegate_->ScheduleTasks(empty);
  orphan_raster_tasks_.clear();

  // This should finish all pending tasks and release any uninitialized
  // resources.
  rasterizer_delegate_->Shutdown();
  rasterizer_delegate_->CheckForCompletedTasks();

  DCHECK_EQ(0u, bytes_releasable_);
  DCHECK_EQ(0u, resources_releasable_);

  for (std::vector<PictureLayerImpl*>::iterator it = layers_.begin();
       it != layers_.end();
       ++it) {
    (*it)->DidUnregisterLayer();
  }
  layers_.clear();
}

void TileManager::Release(Tile* tile) {
  prioritized_tiles_dirty_ = true;
  released_tiles_.push_back(tile);
}

void TileManager::DidChangeTilePriority(Tile* tile) {
  prioritized_tiles_dirty_ = true;
}

bool TileManager::ShouldForceTasksRequiredForActivationToComplete() const {
  return global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;
}

void TileManager::CleanUpReleasedTiles() {
  for (std::vector<Tile*>::iterator it = released_tiles_.begin();
       it != released_tiles_.end();
       ++it) {
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();

    for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
      FreeResourceForTile(tile, static_cast<RasterMode>(mode));
      orphan_raster_tasks_.push_back(mts.tile_versions[mode].raster_task_);
    }

    DCHECK(tiles_.find(tile->id()) != tiles_.end());
    tiles_.erase(tile->id());

    LayerCountMap::iterator layer_it =
        used_layer_counts_.find(tile->layer_id());
    DCHECK_GT(layer_it->second, 0);
    if (--layer_it->second == 0) {
      used_layer_counts_.erase(layer_it);
      image_decode_tasks_.erase(tile->layer_id());
    }

    delete tile;
  }

  released_tiles_.clear();
}

void TileManager::UpdatePrioritizedTileSetIfNeeded() {
  if (!prioritized_tiles_dirty_)
    return;

  CleanUpReleasedTiles();

  prioritized_tiles_.Clear();
  GetTilesWithAssignedBins(&prioritized_tiles_);
  prioritized_tiles_dirty_ = false;
}

void TileManager::DidFinishRunningTasks() {
  TRACE_EVENT0("cc", "TileManager::DidFinishRunningTasks");

  bool memory_usage_above_limit = resource_pool_->total_memory_usage_bytes() >
                                  global_state_.soft_memory_limit_in_bytes;

  // When OOM, keep re-assigning memory until we reach a steady state
  // where top-priority tiles are initialized.
  if (all_tiles_that_need_to_be_rasterized_have_memory_ &&
      !memory_usage_above_limit)
    return;

  rasterizer_delegate_->CheckForCompletedTasks();
  did_check_for_completed_tasks_since_last_schedule_tasks_ = true;

  TileVector tiles_that_need_to_be_rasterized;
  AssignGpuMemoryToTiles(&prioritized_tiles_,
                         &tiles_that_need_to_be_rasterized);

  // |tiles_that_need_to_be_rasterized| will be empty when we reach a
  // steady memory state. Keep scheduling tasks until we reach this state.
  if (!tiles_that_need_to_be_rasterized.empty()) {
    ScheduleTasks(tiles_that_need_to_be_rasterized);
    return;
  }

  resource_pool_->ReduceResourceUsage();

  // We don't reserve memory for required-for-activation tiles during
  // accelerated gestures, so we just postpone activation when we don't
  // have these tiles, and activate after the accelerated gesture.
  bool allow_rasterize_on_demand =
      global_state_.tree_priority != SMOOTHNESS_TAKES_PRIORITY;

  // Use on-demand raster for any required-for-activation tiles that have not
  // been been assigned memory after reaching a steady memory state. This
  // ensures that we activate even when OOM.
  for (TileMap::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = it->second;
    ManagedTileState& mts = tile->managed_state();
    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];

    if (tile->required_for_activation() && !tile_version.IsReadyToDraw()) {
      // If we can't raster on demand, give up early (and don't activate).
      if (!allow_rasterize_on_demand)
        return;
      if (use_rasterize_on_demand_)
        tile_version.set_rasterize_on_demand();
    }
  }

  client_->NotifyReadyToActivate();
}

void TileManager::DidFinishRunningTasksRequiredForActivation() {
  // This is only a true indication that all tiles required for
  // activation are initialized when no tiles are OOM. We need to
  // wait for DidFinishRunningTasks() to be called, try to re-assign
  // memory and in worst case use on-demand raster when tiles
  // required for activation are OOM.
  if (!all_tiles_required_for_activation_have_memory_)
    return;

  client_->NotifyReadyToActivate();
}

void TileManager::GetTilesWithAssignedBins(PrioritizedTileSet* tiles) {
  TRACE_EVENT0("cc", "TileManager::GetTilesWithAssignedBins");

  // Compute new stats to be return by GetMemoryStats().
  memory_required_bytes_ = 0;
  memory_nice_to_have_bytes_ = 0;

  const TileMemoryLimitPolicy memory_policy = global_state_.memory_limit_policy;
  const TreePriority tree_priority = global_state_.tree_priority;

  // For each tree, bin into different categories of tiles.
  for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = it->second;
    ManagedTileState& mts = tile->managed_state();

    const ManagedTileState::TileVersion& tile_version =
        tile->GetTileVersionForDrawing();
    bool tile_is_ready_to_draw = tile_version.IsReadyToDraw();
    bool tile_is_active = tile_is_ready_to_draw ||
                          mts.tile_versions[mts.raster_mode].raster_task_;

    // Get the active priority and bin.
    TilePriority active_priority = tile->priority(ACTIVE_TREE);
    ManagedTileBin active_bin = BinFromTilePriority(active_priority);

    // Get the pending priority and bin.
    TilePriority pending_priority = tile->priority(PENDING_TREE);
    ManagedTileBin pending_bin = BinFromTilePriority(pending_priority);

    bool pending_is_low_res = pending_priority.resolution == LOW_RESOLUTION;
    bool pending_is_non_ideal =
        pending_priority.resolution == NON_IDEAL_RESOLUTION;
    bool active_is_non_ideal =
        active_priority.resolution == NON_IDEAL_RESOLUTION;

    // Adjust pending bin state for low res tiles. This prevents
    // pending tree low-res tiles from being initialized before
    // high-res tiles.
    if (pending_is_low_res)
      pending_bin = std::max(pending_bin, EVENTUALLY_BIN);

    // Adjust bin state based on if ready to draw.
    active_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][active_bin];
    pending_bin = kBinReadyToDrawMap[tile_is_ready_to_draw][pending_bin];

    // Adjust bin state based on if active.
    active_bin = kBinIsActiveMap[tile_is_active][active_bin];
    pending_bin = kBinIsActiveMap[tile_is_active][pending_bin];

    // We never want to paint new non-ideal tiles, as we always have
    // a high-res tile covering that content (paint that instead).
    if (!tile_is_ready_to_draw && active_is_non_ideal)
      active_bin = NEVER_BIN;
    if (!tile_is_ready_to_draw && pending_is_non_ideal)
      pending_bin = NEVER_BIN;

    // Compute combined bin.
    ManagedTileBin combined_bin = std::min(active_bin, pending_bin);

    if (!tile_is_ready_to_draw || tile_version.requires_resource()) {
      // The bin that the tile would have if the GPU memory manager had
      // a maximally permissive policy, send to the GPU memory manager
      // to determine policy.
      ManagedTileBin gpu_memmgr_stats_bin = combined_bin;
      if ((gpu_memmgr_stats_bin == NOW_BIN) ||
          (gpu_memmgr_stats_bin == NOW_AND_READY_TO_DRAW_BIN))
        memory_required_bytes_ += BytesConsumedIfAllocated(tile);
      if (gpu_memmgr_stats_bin != NEVER_BIN)
        memory_nice_to_have_bytes_ += BytesConsumedIfAllocated(tile);
    }

    ManagedTileBin tree_bin[NUM_TREES];
    tree_bin[ACTIVE_TREE] = kBinPolicyMap[memory_policy][active_bin];
    tree_bin[PENDING_TREE] = kBinPolicyMap[memory_policy][pending_bin];

    TilePriority tile_priority;
    switch (tree_priority) {
      case SAME_PRIORITY_FOR_BOTH_TREES:
        mts.bin = kBinPolicyMap[memory_policy][combined_bin];
        tile_priority = tile->combined_priority();
        break;
      case SMOOTHNESS_TAKES_PRIORITY:
        mts.bin = tree_bin[ACTIVE_TREE];
        tile_priority = active_priority;
        break;
      case NEW_CONTENT_TAKES_PRIORITY:
        mts.bin = tree_bin[PENDING_TREE];
        tile_priority = pending_priority;
        break;
    }

    // Bump up the priority if we determined it's NEVER_BIN on one tree,
    // but is still required on the other tree.
    bool is_in_never_bin_on_both_trees = tree_bin[ACTIVE_TREE] == NEVER_BIN &&
                                         tree_bin[PENDING_TREE] == NEVER_BIN;

    if (mts.bin == NEVER_BIN && !is_in_never_bin_on_both_trees)
      mts.bin = tile_is_active ? AT_LAST_AND_ACTIVE_BIN : AT_LAST_BIN;

    mts.resolution = tile_priority.resolution;
    mts.priority_bin = tile_priority.priority_bin;
    mts.distance_to_visible = tile_priority.distance_to_visible;
    mts.required_for_activation = tile_priority.required_for_activation;

    mts.visible_and_ready_to_draw =
        tree_bin[ACTIVE_TREE] == NOW_AND_READY_TO_DRAW_BIN;

    // If the tile is in NEVER_BIN and it does not have an active task, then we
    // can release the resources early. If it does have the task however, we
    // should keep it in the prioritized tile set to ensure that AssignGpuMemory
    // can visit it.
    if (mts.bin == NEVER_BIN &&
        !mts.tile_versions[mts.raster_mode].raster_task_) {
      FreeResourcesForTile(tile);
      continue;
    }

    // Insert the tile into a priority set.
    tiles->InsertTile(tile, mts.bin);
  }
}

void TileManager::ManageTiles(const GlobalStateThatImpactsTilePriority& state) {
  TRACE_EVENT0("cc", "TileManager::ManageTiles");

  // Update internal state.
  if (state != global_state_) {
    global_state_ = state;
    prioritized_tiles_dirty_ = true;
  }

  // We need to call CheckForCompletedTasks() once in-between each call
  // to ScheduleTasks() to prevent canceled tasks from being scheduled.
  if (!did_check_for_completed_tasks_since_last_schedule_tasks_) {
    rasterizer_delegate_->CheckForCompletedTasks();
    did_check_for_completed_tasks_since_last_schedule_tasks_ = true;
  }

  UpdatePrioritizedTileSetIfNeeded();

  TileVector tiles_that_need_to_be_rasterized;
  AssignGpuMemoryToTiles(&prioritized_tiles_,
                         &tiles_that_need_to_be_rasterized);

  // Finally, schedule rasterizer tasks.
  ScheduleTasks(tiles_that_need_to_be_rasterized);

  TRACE_EVENT_INSTANT1("cc",
                       "DidManage",
                       TRACE_EVENT_SCOPE_THREAD,
                       "state",
                       TracedValue::FromValue(BasicStateAsValue().release()));

  TRACE_COUNTER_ID1("cc",
                    "unused_memory_bytes",
                    this,
                    resource_pool_->total_memory_usage_bytes() -
                        resource_pool_->acquired_memory_usage_bytes());
}

bool TileManager::UpdateVisibleTiles() {
  TRACE_EVENT0("cc", "TileManager::UpdateVisibleTiles");

  rasterizer_delegate_->CheckForCompletedTasks();
  did_check_for_completed_tasks_since_last_schedule_tasks_ = true;

  TRACE_EVENT_INSTANT1(
      "cc",
      "DidUpdateVisibleTiles",
      TRACE_EVENT_SCOPE_THREAD,
      "stats",
      TracedValue::FromValue(RasterTaskCompletionStatsAsValue(
                                 update_visible_tiles_stats_).release()));
  update_visible_tiles_stats_ = RasterTaskCompletionStats();

  bool did_initialize_visible_tile = did_initialize_visible_tile_;
  did_initialize_visible_tile_ = false;
  return did_initialize_visible_tile;
}

void TileManager::GetMemoryStats(size_t* memory_required_bytes,
                                 size_t* memory_nice_to_have_bytes,
                                 size_t* memory_allocated_bytes,
                                 size_t* memory_used_bytes) const {
  *memory_required_bytes = memory_required_bytes_;
  *memory_nice_to_have_bytes = memory_nice_to_have_bytes_;
  *memory_allocated_bytes = resource_pool_->total_memory_usage_bytes();
  *memory_used_bytes = resource_pool_->acquired_memory_usage_bytes();
}

scoped_ptr<base::Value> TileManager::BasicStateAsValue() const {
  scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
  state->SetInteger("tile_count", tiles_.size());
  state->Set("global_state", global_state_.AsValue().release());
  state->Set("memory_requirements", GetMemoryRequirementsAsValue().release());
  return state.PassAs<base::Value>();
}

scoped_ptr<base::Value> TileManager::AllTilesAsValue() const {
  scoped_ptr<base::ListValue> state(new base::ListValue());
  for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it)
    state->Append(it->second->AsValue().release());

  return state.PassAs<base::Value>();
}

scoped_ptr<base::Value> TileManager::GetMemoryRequirementsAsValue() const {
  scoped_ptr<base::DictionaryValue> requirements(new base::DictionaryValue());

  size_t memory_required_bytes;
  size_t memory_nice_to_have_bytes;
  size_t memory_allocated_bytes;
  size_t memory_used_bytes;
  GetMemoryStats(&memory_required_bytes,
                 &memory_nice_to_have_bytes,
                 &memory_allocated_bytes,
                 &memory_used_bytes);
  requirements->SetInteger("memory_required_bytes", memory_required_bytes);
  requirements->SetInteger("memory_nice_to_have_bytes",
                           memory_nice_to_have_bytes);
  requirements->SetInteger("memory_allocated_bytes", memory_allocated_bytes);
  requirements->SetInteger("memory_used_bytes", memory_used_bytes);
  return requirements.PassAs<base::Value>();
}

void TileManager::AssignGpuMemoryToTiles(
    PrioritizedTileSet* tiles,
    TileVector* tiles_that_need_to_be_rasterized) {
  TRACE_EVENT0("cc", "TileManager::AssignGpuMemoryToTiles");

  // Maintain the list of released resources that can potentially be re-used
  // or deleted.
  // If this operation becomes expensive too, only do this after some
  // resource(s) was returned. Note that in that case, one also need to
  // invalidate when releasing some resource from the pool.
  resource_pool_->CheckBusyResources();

  // Now give memory out to the tiles until we're out, and build
  // the needs-to-be-rasterized queue.
  all_tiles_that_need_to_be_rasterized_have_memory_ = true;
  all_tiles_required_for_activation_have_memory_ = true;

  // Cast to prevent overflow.
  int64 soft_bytes_available =
      static_cast<int64>(bytes_releasable_) +
      static_cast<int64>(global_state_.soft_memory_limit_in_bytes) -
      static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
  int64 hard_bytes_available =
      static_cast<int64>(bytes_releasable_) +
      static_cast<int64>(global_state_.hard_memory_limit_in_bytes) -
      static_cast<int64>(resource_pool_->acquired_memory_usage_bytes());
  int resources_available = resources_releasable_ +
                            global_state_.num_resources_limit -
                            resource_pool_->acquired_resource_count();
  size_t soft_bytes_allocatable =
      std::max(static_cast<int64>(0), soft_bytes_available);
  size_t hard_bytes_allocatable =
      std::max(static_cast<int64>(0), hard_bytes_available);
  size_t resources_allocatable = std::max(0, resources_available);

  size_t bytes_that_exceeded_memory_budget = 0;
  size_t soft_bytes_left = soft_bytes_allocatable;
  size_t hard_bytes_left = hard_bytes_allocatable;

  size_t resources_left = resources_allocatable;
  bool oomed_soft = false;
  bool oomed_hard = false;
  bool have_hit_soft_memory = false;  // Soft memory comes after hard.

  // Memory we assign to raster tasks now will be deducted from our memory
  // in future iterations if priorities change. By assigning at most half
  // the raster limit, we will always have another 50% left even if priorities
  // change completely (assuming we check for completed/cancelled rasters
  // between each call to this function).
  size_t max_raster_bytes = max_raster_usage_bytes_ / 2;
  size_t raster_bytes = 0;

  unsigned schedule_priority = 1u;
  for (PrioritizedTileSet::Iterator it(tiles, true); it; ++it) {
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();

    mts.scheduled_priority = schedule_priority++;

    mts.raster_mode = tile->DetermineOverallRasterMode();

    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];

    // If this tile doesn't need a resource, then nothing to do.
    if (!tile_version.requires_resource())
      continue;

    // If the tile is not needed, free it up.
    if (mts.bin == NEVER_BIN) {
      FreeResourcesForTile(tile);
      continue;
    }

    const bool tile_uses_hard_limit = mts.bin <= NOW_BIN;
    const size_t bytes_if_allocated = BytesConsumedIfAllocated(tile);
    const size_t raster_bytes_if_rastered = raster_bytes + bytes_if_allocated;
    const size_t tile_bytes_left =
        (tile_uses_hard_limit) ? hard_bytes_left : soft_bytes_left;

    // Hard-limit is reserved for tiles that would cause a calamity
    // if they were to go away, so by definition they are the highest
    // priority memory, and must be at the front of the list.
    DCHECK(!(have_hit_soft_memory && tile_uses_hard_limit));
    have_hit_soft_memory |= !tile_uses_hard_limit;

    size_t tile_bytes = 0;
    size_t tile_resources = 0;

    // It costs to maintain a resource.
    for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
      if (mts.tile_versions[mode].resource_) {
        tile_bytes += bytes_if_allocated;
        tile_resources++;
      }
    }

    // Allow lower priority tiles with initialized resources to keep
    // their memory by only assigning memory to new raster tasks if
    // they can be scheduled.
    if (raster_bytes_if_rastered <= max_raster_bytes) {
      // If we don't have the required version, and it's not in flight
      // then we'll have to pay to create a new task.
      if (!tile_version.resource_ && !tile_version.raster_task_) {
        tile_bytes += bytes_if_allocated;
        tile_resources++;
      }
    }

    // Tile is OOM.
    if (tile_bytes > tile_bytes_left || tile_resources > resources_left) {
      FreeResourcesForTile(tile);

      // This tile was already on screen and now its resources have been
      // released. In order to prevent checkerboarding, set this tile as
      // rasterize on demand immediately.
      if (mts.visible_and_ready_to_draw && use_rasterize_on_demand_)
        tile_version.set_rasterize_on_demand();

      oomed_soft = true;
      if (tile_uses_hard_limit) {
        oomed_hard = true;
        bytes_that_exceeded_memory_budget += tile_bytes;
      }
    } else {
      resources_left -= tile_resources;
      hard_bytes_left -= tile_bytes;
      soft_bytes_left =
          (soft_bytes_left > tile_bytes) ? soft_bytes_left - tile_bytes : 0;
      if (tile_version.resource_)
        continue;
    }

    DCHECK(!tile_version.resource_);

    // Tile shouldn't be rasterized if |tiles_that_need_to_be_rasterized|
    // has reached it's limit or we've failed to assign gpu memory to this
    // or any higher priority tile. Preventing tiles that fit into memory
    // budget to be rasterized when higher priority tile is oom is
    // important for two reasons:
    // 1. Tile size should not impact raster priority.
    // 2. Tiles with existing raster task could otherwise incorrectly
    //    be added as they are not affected by |bytes_allocatable|.
    bool can_schedule_tile =
        !oomed_soft && raster_bytes_if_rastered <= max_raster_bytes &&
        tiles_that_need_to_be_rasterized->size() < kScheduledRasterTasksLimit;

    if (!can_schedule_tile) {
      all_tiles_that_need_to_be_rasterized_have_memory_ = false;
      if (tile->required_for_activation())
        all_tiles_required_for_activation_have_memory_ = false;
      it.DisablePriorityOrdering();
      continue;
    }

    raster_bytes = raster_bytes_if_rastered;
    tiles_that_need_to_be_rasterized->push_back(tile);
  }

  // OOM reporting uses hard-limit, soft-OOM is normal depending on limit.
  ever_exceeded_memory_budget_ |= oomed_hard;
  if (ever_exceeded_memory_budget_) {
    TRACE_COUNTER_ID2("cc",
                      "over_memory_budget",
                      this,
                      "budget",
                      global_state_.hard_memory_limit_in_bytes,
                      "over",
                      bytes_that_exceeded_memory_budget);
  }
  memory_stats_from_last_assign_.total_budget_in_bytes =
      global_state_.hard_memory_limit_in_bytes;
  memory_stats_from_last_assign_.bytes_allocated =
      hard_bytes_allocatable - hard_bytes_left;
  memory_stats_from_last_assign_.bytes_unreleasable =
      resource_pool_->acquired_memory_usage_bytes() - bytes_releasable_;
  memory_stats_from_last_assign_.bytes_over = bytes_that_exceeded_memory_budget;
}

void TileManager::FreeResourceForTile(Tile* tile, RasterMode mode) {
  ManagedTileState& mts = tile->managed_state();
  if (mts.tile_versions[mode].resource_) {
    resource_pool_->ReleaseResource(mts.tile_versions[mode].resource_.Pass());

    DCHECK_GE(bytes_releasable_, BytesConsumedIfAllocated(tile));
    DCHECK_GE(resources_releasable_, 1u);

    bytes_releasable_ -= BytesConsumedIfAllocated(tile);
    --resources_releasable_;
  }
}

void TileManager::FreeResourcesForTile(Tile* tile) {
  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
    FreeResourceForTile(tile, static_cast<RasterMode>(mode));
  }
}

void TileManager::FreeUnusedResourcesForTile(Tile* tile) {
  DCHECK(tile->IsReadyToDraw());
  ManagedTileState& mts = tile->managed_state();
  RasterMode used_mode = HIGH_QUALITY_NO_LCD_RASTER_MODE;
  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
    if (mts.tile_versions[mode].IsReadyToDraw()) {
      used_mode = static_cast<RasterMode>(mode);
      break;
    }
  }

  for (int mode = 0; mode < NUM_RASTER_MODES; ++mode) {
    if (mode != used_mode)
      FreeResourceForTile(tile, static_cast<RasterMode>(mode));
  }
}

void TileManager::ScheduleTasks(
    const TileVector& tiles_that_need_to_be_rasterized) {
  TRACE_EVENT1("cc",
               "TileManager::ScheduleTasks",
               "count",
               tiles_that_need_to_be_rasterized.size());

  DCHECK(did_check_for_completed_tasks_since_last_schedule_tasks_);

  for (size_t i = 0; i < NUM_RASTERIZER_TYPES; ++i)
    raster_queue_[i].Reset();

  // Build a new task queue containing all task currently needed. Tasks
  // are added in order of priority, highest priority task first.
  for (TileVector::const_iterator it = tiles_that_need_to_be_rasterized.begin();
       it != tiles_that_need_to_be_rasterized.end();
       ++it) {
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();
    ManagedTileState::TileVersion& tile_version =
        mts.tile_versions[mts.raster_mode];

    DCHECK(tile_version.requires_resource());
    DCHECK(!tile_version.resource_);

    if (!tile_version.raster_task_)
      tile_version.raster_task_ = CreateRasterTask(tile);

    size_t pool_type = tile->use_gpu_rasterization() ? RASTERIZER_TYPE_GPU
                                                     : RASTERIZER_TYPE_DEFAULT;

    raster_queue_[pool_type].items.push_back(RasterTaskQueue::Item(
        tile_version.raster_task_.get(), tile->required_for_activation()));
    raster_queue_[pool_type].required_for_activation_count +=
        tile->required_for_activation();
  }

  // We must reduce the amount of unused resoruces before calling
  // ScheduleTasks to prevent usage from rising above limits.
  resource_pool_->ReduceResourceUsage();

  // Schedule running of |raster_tasks_|. This replaces any previously
  // scheduled tasks and effectively cancels all tasks not present
  // in |raster_tasks_|.
  rasterizer_delegate_->ScheduleTasks(raster_queue_);

  // It's now safe to clean up orphan tasks as raster worker pool is not
  // allowed to keep around unreferenced raster tasks after ScheduleTasks() has
  // been called.
  orphan_raster_tasks_.clear();

  did_check_for_completed_tasks_since_last_schedule_tasks_ = false;
}

scoped_refptr<ImageDecodeTask> TileManager::CreateImageDecodeTask(
    Tile* tile,
    SkPixelRef* pixel_ref) {
  return make_scoped_refptr(new ImageDecodeTaskImpl(
      pixel_ref,
      tile->layer_id(),
      rendering_stats_instrumentation_,
      base::Bind(&TileManager::OnImageDecodeTaskCompleted,
                 base::Unretained(this),
                 tile->layer_id(),
                 base::Unretained(pixel_ref))));
}

scoped_refptr<RasterTask> TileManager::CreateRasterTask(Tile* tile) {
  ManagedTileState& mts = tile->managed_state();

  scoped_ptr<ScopedResource> resource =
      resource_pool_->AcquireResource(tile->tile_size_.size());
  const ScopedResource* const_resource = resource.get();

  // Create and queue all image decode tasks that this tile depends on.
  ImageDecodeTask::Vector decode_tasks;
  PixelRefTaskMap& existing_pixel_refs = image_decode_tasks_[tile->layer_id()];
  for (PicturePileImpl::PixelRefIterator iter(
           tile->content_rect(), tile->contents_scale(), tile->picture_pile());
       iter;
       ++iter) {
    SkPixelRef* pixel_ref = *iter;
    uint32_t id = pixel_ref->getGenerationID();

    // Append existing image decode task if available.
    PixelRefTaskMap::iterator decode_task_it = existing_pixel_refs.find(id);
    if (decode_task_it != existing_pixel_refs.end()) {
      decode_tasks.push_back(decode_task_it->second);
      continue;
    }

    // Create and append new image decode task for this pixel ref.
    scoped_refptr<ImageDecodeTask> decode_task =
        CreateImageDecodeTask(tile, pixel_ref);
    decode_tasks.push_back(decode_task);
    existing_pixel_refs[id] = decode_task;
  }

  // We analyze picture before rasterization to detect solid-color tiles.
  // If the tile is detected as such there is no need to raster or upload.
  // It is drawn directly as a solid-color quad saving raster and upload cost.
  // The analysis step is however expensive and is not justified when doing
  // gpu rasterization where there is no upload.
  //
  // Additionally, we do not want to do the analysis if the layer that produced
  // this tile is narrow, since more likely than not the tile would not be
  // solid. We use the picture pile size as a proxy for layer size, since it
  // represents the recorded (and thus rasterizable) content.
  // Note that this last optimization is a heuristic that ensures that we don't
  // spend too much time analyzing tiles on a multitude of small layers, as it
  // is likely that these layers have some non-solid content.
  gfx::Size pile_size = tile->picture_pile()->tiling_rect().size();
  bool analyze_picture = !tile->use_gpu_rasterization() &&
                         std::min(pile_size.width(), pile_size.height()) >=
                             kMinDimensionsForAnalysis;

  return make_scoped_refptr(
      new RasterTaskImpl(const_resource,
                         tile->picture_pile(),
                         tile->content_rect(),
                         tile->contents_scale(),
                         mts.raster_mode,
                         mts.resolution,
                         tile->layer_id(),
                         static_cast<const void*>(tile),
                         tile->source_frame_number(),
                         analyze_picture,
                         rendering_stats_instrumentation_,
                         base::Bind(&TileManager::OnRasterTaskCompleted,
                                    base::Unretained(this),
                                    tile->id(),
                                    base::Passed(&resource),
                                    mts.raster_mode),
                         &decode_tasks));
}

void TileManager::OnImageDecodeTaskCompleted(int layer_id,
                                             SkPixelRef* pixel_ref,
                                             bool was_canceled) {
  // If the task was canceled, we need to clean it up
  // from |image_decode_tasks_|.
  if (!was_canceled)
    return;

  LayerPixelRefTaskMap::iterator layer_it = image_decode_tasks_.find(layer_id);
  if (layer_it == image_decode_tasks_.end())
    return;

  PixelRefTaskMap& pixel_ref_tasks = layer_it->second;
  PixelRefTaskMap::iterator task_it =
      pixel_ref_tasks.find(pixel_ref->getGenerationID());

  if (task_it != pixel_ref_tasks.end())
    pixel_ref_tasks.erase(task_it);
}

void TileManager::OnRasterTaskCompleted(
    Tile::Id tile_id,
    scoped_ptr<ScopedResource> resource,
    RasterMode raster_mode,
    const PicturePileImpl::Analysis& analysis,
    bool was_canceled) {
  TileMap::iterator it = tiles_.find(tile_id);
  if (it == tiles_.end()) {
    ++update_visible_tiles_stats_.canceled_count;
    resource_pool_->ReleaseResource(resource.Pass());
    return;
  }

  Tile* tile = it->second;
  ManagedTileState& mts = tile->managed_state();
  ManagedTileState::TileVersion& tile_version = mts.tile_versions[raster_mode];
  DCHECK(tile_version.raster_task_);
  orphan_raster_tasks_.push_back(tile_version.raster_task_);
  tile_version.raster_task_ = NULL;

  if (was_canceled) {
    ++update_visible_tiles_stats_.canceled_count;
    resource_pool_->ReleaseResource(resource.Pass());
    return;
  }

  ++update_visible_tiles_stats_.completed_count;

  tile_version.set_has_text(analysis.has_text);
  if (analysis.is_solid_color) {
    tile_version.set_solid_color(analysis.solid_color);
    resource_pool_->ReleaseResource(resource.Pass());
  } else {
    tile_version.set_use_resource();
    tile_version.resource_ = resource.Pass();

    bytes_releasable_ += BytesConsumedIfAllocated(tile);
    ++resources_releasable_;
  }

  client_->NotifyTileInitialized(tile);

  FreeUnusedResourcesForTile(tile);
  if (tile->priority(ACTIVE_TREE).distance_to_visible == 0.f)
    did_initialize_visible_tile_ = true;
}

scoped_refptr<Tile> TileManager::CreateTile(PicturePileImpl* picture_pile,
                                            const gfx::Size& tile_size,
                                            const gfx::Rect& content_rect,
                                            const gfx::Rect& opaque_rect,
                                            float contents_scale,
                                            int layer_id,
                                            int source_frame_number,
                                            int flags) {
  scoped_refptr<Tile> tile = make_scoped_refptr(new Tile(this,
                                                         picture_pile,
                                                         tile_size,
                                                         content_rect,
                                                         opaque_rect,
                                                         contents_scale,
                                                         layer_id,
                                                         source_frame_number,
                                                         flags));
  DCHECK(tiles_.find(tile->id()) == tiles_.end());

  tiles_[tile->id()] = tile;
  used_layer_counts_[tile->layer_id()]++;
  prioritized_tiles_dirty_ = true;
  return tile;
}

void TileManager::RegisterPictureLayerImpl(PictureLayerImpl* layer) {
  DCHECK(std::find(layers_.begin(), layers_.end(), layer) == layers_.end());
  layers_.push_back(layer);
}

void TileManager::UnregisterPictureLayerImpl(PictureLayerImpl* layer) {
  std::vector<PictureLayerImpl*>::iterator it =
      std::find(layers_.begin(), layers_.end(), layer);
  DCHECK(it != layers_.end());
  layers_.erase(it);
}

void TileManager::GetPairedPictureLayers(
    std::vector<PairedPictureLayer>* paired_layers) const {
  paired_layers->clear();
  // Reserve a maximum possible paired layers.
  paired_layers->reserve(layers_.size());

  for (std::vector<PictureLayerImpl*>::const_iterator it = layers_.begin();
       it != layers_.end();
       ++it) {
    PictureLayerImpl* layer = *it;

    // This is a recycle tree layer, we can safely skip since the tiles on this
    // layer have to be accessible via the active tree.
    if (!layer->IsOnActiveOrPendingTree())
      continue;

    PictureLayerImpl* twin_layer = layer->GetTwinLayer();

    // If the twin layer is recycled, it is not a valid twin.
    if (twin_layer && !twin_layer->IsOnActiveOrPendingTree())
      twin_layer = NULL;

    PairedPictureLayer paired_layer;
    WhichTree tree = layer->GetTree();

    // If the current tree is ACTIVE_TREE, then always generate a paired_layer.
    // If current tree is PENDING_TREE, then only generate a paired_layer if
    // there is no twin layer.
    if (tree == ACTIVE_TREE) {
      DCHECK(!twin_layer || twin_layer->GetTree() == PENDING_TREE);
      paired_layer.active_layer = layer;
      paired_layer.pending_layer = twin_layer;
      paired_layers->push_back(paired_layer);
    } else if (!twin_layer) {
      paired_layer.active_layer = NULL;
      paired_layer.pending_layer = layer;
      paired_layers->push_back(paired_layer);
    }
  }
}

TileManager::PairedPictureLayer::PairedPictureLayer()
    : active_layer(NULL), pending_layer(NULL) {}

TileManager::PairedPictureLayer::~PairedPictureLayer() {}

TileManager::RasterTileIterator::RasterTileIterator(TileManager* tile_manager,
                                                    TreePriority tree_priority)
    : tree_priority_(tree_priority), comparator_(tree_priority) {
  std::vector<TileManager::PairedPictureLayer> paired_layers;
  tile_manager->GetPairedPictureLayers(&paired_layers);
  bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;

  paired_iterators_.reserve(paired_layers.size());
  iterator_heap_.reserve(paired_layers.size());
  for (std::vector<TileManager::PairedPictureLayer>::iterator it =
           paired_layers.begin();
       it != paired_layers.end();
       ++it) {
    PairedPictureLayerIterator paired_iterator;
    if (it->active_layer) {
      paired_iterator.active_iterator =
          PictureLayerImpl::LayerRasterTileIterator(it->active_layer,
                                                    prioritize_low_res);
    }

    if (it->pending_layer) {
      paired_iterator.pending_iterator =
          PictureLayerImpl::LayerRasterTileIterator(it->pending_layer,
                                                    prioritize_low_res);
    }

    if (paired_iterator.PeekTile(tree_priority_) != NULL) {
      paired_iterators_.push_back(paired_iterator);
      iterator_heap_.push_back(&paired_iterators_.back());
    }
  }

  std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}

TileManager::RasterTileIterator::~RasterTileIterator() {}

TileManager::RasterTileIterator& TileManager::RasterTileIterator::operator++() {
  DCHECK(*this);

  std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
  iterator_heap_.pop_back();

  paired_iterator->PopTile(tree_priority_);
  if (paired_iterator->PeekTile(tree_priority_) != NULL) {
    iterator_heap_.push_back(paired_iterator);
    std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  }
  return *this;
}

TileManager::RasterTileIterator::operator bool() const {
  return !iterator_heap_.empty();
}

Tile* TileManager::RasterTileIterator::operator*() {
  DCHECK(*this);
  return iterator_heap_.front()->PeekTile(tree_priority_);
}

TileManager::RasterTileIterator::PairedPictureLayerIterator::
    PairedPictureLayerIterator() {}

TileManager::RasterTileIterator::PairedPictureLayerIterator::
    ~PairedPictureLayerIterator() {}

Tile* TileManager::RasterTileIterator::PairedPictureLayerIterator::PeekTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerRasterTileIterator* next_iterator =
      NextTileIterator(tree_priority).first;
  if (!next_iterator)
    return NULL;

  DCHECK(*next_iterator);
  DCHECK(std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) == returned_shared_tiles.end());
  return **next_iterator;
}

void TileManager::RasterTileIterator::PairedPictureLayerIterator::PopTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerRasterTileIterator* next_iterator =
      NextTileIterator(tree_priority).first;
  DCHECK(next_iterator);
  DCHECK(*next_iterator);
  returned_shared_tiles.push_back(**next_iterator);
  ++(*next_iterator);

  next_iterator = NextTileIterator(tree_priority).first;
  while (next_iterator &&
         std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) != returned_shared_tiles.end()) {
    ++(*next_iterator);
    next_iterator = NextTileIterator(tree_priority).first;
  }
}

std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>
TileManager::RasterTileIterator::PairedPictureLayerIterator::NextTileIterator(
    TreePriority tree_priority) {
  // If both iterators are out of tiles, return NULL.
  if (!active_iterator && !pending_iterator) {
    return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
        NULL, ACTIVE_TREE);
  }

  // If we only have one iterator with tiles, return it.
  if (!active_iterator)
    return std::make_pair(&pending_iterator, PENDING_TREE);
  if (!pending_iterator)
    return std::make_pair(&active_iterator, ACTIVE_TREE);

  // Now both iterators have tiles, so we have to decide based on tree priority.
  switch (tree_priority) {
    case SMOOTHNESS_TAKES_PRIORITY:
      return std::make_pair(&active_iterator, ACTIVE_TREE);
    case NEW_CONTENT_TAKES_PRIORITY:
      return std::make_pair(&pending_iterator, ACTIVE_TREE);
    case SAME_PRIORITY_FOR_BOTH_TREES: {
      Tile* active_tile = *active_iterator;
      Tile* pending_tile = *pending_iterator;
      if (active_tile == pending_tile)
        return std::make_pair(&active_iterator, ACTIVE_TREE);

      const TilePriority& active_priority = active_tile->priority(ACTIVE_TREE);
      const TilePriority& pending_priority =
          pending_tile->priority(PENDING_TREE);

      if (active_priority.IsHigherPriorityThan(pending_priority))
        return std::make_pair(&active_iterator, ACTIVE_TREE);
      return std::make_pair(&pending_iterator, PENDING_TREE);
    }
  }

  NOTREACHED();
  // Keep the compiler happy.
  return std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree>(
      NULL, ACTIVE_TREE);
}

TileManager::RasterTileIterator::RasterOrderComparator::RasterOrderComparator(
    TreePriority tree_priority)
    : tree_priority_(tree_priority) {}

bool TileManager::RasterTileIterator::RasterOrderComparator::operator()(
    PairedPictureLayerIterator* a,
    PairedPictureLayerIterator* b) const {
  std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> a_pair =
      a->NextTileIterator(tree_priority_);
  DCHECK(a_pair.first);
  DCHECK(*a_pair.first);

  std::pair<PictureLayerImpl::LayerRasterTileIterator*, WhichTree> b_pair =
      b->NextTileIterator(tree_priority_);
  DCHECK(b_pair.first);
  DCHECK(*b_pair.first);

  Tile* a_tile = **a_pair.first;
  Tile* b_tile = **b_pair.first;

  const TilePriority& a_priority =
      a_tile->priority_for_tree_priority(tree_priority_);
  const TilePriority& b_priority =
      b_tile->priority_for_tree_priority(tree_priority_);
  bool prioritize_low_res = tree_priority_ == SMOOTHNESS_TAKES_PRIORITY;

  if (b_priority.resolution != a_priority.resolution) {
    return (prioritize_low_res && b_priority.resolution == LOW_RESOLUTION) ||
           (!prioritize_low_res && b_priority.resolution == HIGH_RESOLUTION) ||
           (a_priority.resolution == NON_IDEAL_RESOLUTION);
  }

  return b_priority.IsHigherPriorityThan(a_priority);
}

TileManager::EvictionTileIterator::EvictionTileIterator()
    : comparator_(SAME_PRIORITY_FOR_BOTH_TREES) {}

TileManager::EvictionTileIterator::EvictionTileIterator(
    TileManager* tile_manager,
    TreePriority tree_priority)
    : tree_priority_(tree_priority), comparator_(tree_priority) {
  std::vector<TileManager::PairedPictureLayer> paired_layers;

  tile_manager->GetPairedPictureLayers(&paired_layers);

  paired_iterators_.reserve(paired_layers.size());
  iterator_heap_.reserve(paired_layers.size());
  for (std::vector<TileManager::PairedPictureLayer>::iterator it =
           paired_layers.begin();
       it != paired_layers.end();
       ++it) {
    PairedPictureLayerIterator paired_iterator;
    if (it->active_layer) {
      paired_iterator.active_iterator =
          PictureLayerImpl::LayerEvictionTileIterator(it->active_layer,
                                                      tree_priority_);
    }

    if (it->pending_layer) {
      paired_iterator.pending_iterator =
          PictureLayerImpl::LayerEvictionTileIterator(it->pending_layer,
                                                      tree_priority_);
    }

    if (paired_iterator.PeekTile(tree_priority_) != NULL) {
      paired_iterators_.push_back(paired_iterator);
      iterator_heap_.push_back(&paired_iterators_.back());
    }
  }

  std::make_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
}

TileManager::EvictionTileIterator::~EvictionTileIterator() {}

TileManager::EvictionTileIterator& TileManager::EvictionTileIterator::
operator++() {
  std::pop_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  PairedPictureLayerIterator* paired_iterator = iterator_heap_.back();
  iterator_heap_.pop_back();

  paired_iterator->PopTile(tree_priority_);
  if (paired_iterator->PeekTile(tree_priority_) != NULL) {
    iterator_heap_.push_back(paired_iterator);
    std::push_heap(iterator_heap_.begin(), iterator_heap_.end(), comparator_);
  }
  return *this;
}

TileManager::EvictionTileIterator::operator bool() const {
  return !iterator_heap_.empty();
}

Tile* TileManager::EvictionTileIterator::operator*() {
  DCHECK(*this);
  return iterator_heap_.front()->PeekTile(tree_priority_);
}

TileManager::EvictionTileIterator::PairedPictureLayerIterator::
    PairedPictureLayerIterator() {}

TileManager::EvictionTileIterator::PairedPictureLayerIterator::
    ~PairedPictureLayerIterator() {}

Tile* TileManager::EvictionTileIterator::PairedPictureLayerIterator::PeekTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
      NextTileIterator(tree_priority);
  if (!next_iterator)
    return NULL;

  DCHECK(*next_iterator);
  DCHECK(std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) == returned_shared_tiles.end());
  return **next_iterator;
}

void TileManager::EvictionTileIterator::PairedPictureLayerIterator::PopTile(
    TreePriority tree_priority) {
  PictureLayerImpl::LayerEvictionTileIterator* next_iterator =
      NextTileIterator(tree_priority);
  DCHECK(next_iterator);
  DCHECK(*next_iterator);
  returned_shared_tiles.push_back(**next_iterator);
  ++(*next_iterator);

  next_iterator = NextTileIterator(tree_priority);
  while (next_iterator &&
         std::find(returned_shared_tiles.begin(),
                   returned_shared_tiles.end(),
                   **next_iterator) != returned_shared_tiles.end()) {
    ++(*next_iterator);
    next_iterator = NextTileIterator(tree_priority);
  }
}

PictureLayerImpl::LayerEvictionTileIterator*
TileManager::EvictionTileIterator::PairedPictureLayerIterator::NextTileIterator(
    TreePriority tree_priority) {
  // If both iterators are out of tiles, return NULL.
  if (!active_iterator && !pending_iterator)
    return NULL;

  // If we only have one iterator with tiles, return it.
  if (!active_iterator)
    return &pending_iterator;
  if (!pending_iterator)
    return &active_iterator;

  Tile* active_tile = *active_iterator;
  Tile* pending_tile = *pending_iterator;
  if (active_tile == pending_tile)
    return &active_iterator;

  const TilePriority& active_priority =
      active_tile->priority_for_tree_priority(tree_priority);
  const TilePriority& pending_priority =
      pending_tile->priority_for_tree_priority(tree_priority);

  if (pending_priority.IsHigherPriorityThan(active_priority))
    return &active_iterator;
  return &pending_iterator;
}

TileManager::EvictionTileIterator::EvictionOrderComparator::
    EvictionOrderComparator(TreePriority tree_priority)
    : tree_priority_(tree_priority) {}

bool TileManager::EvictionTileIterator::EvictionOrderComparator::operator()(
    PairedPictureLayerIterator* a,
    PairedPictureLayerIterator* b) const {
  PictureLayerImpl::LayerEvictionTileIterator* a_iterator =
      a->NextTileIterator(tree_priority_);
  DCHECK(a_iterator);
  DCHECK(*a_iterator);

  PictureLayerImpl::LayerEvictionTileIterator* b_iterator =
      b->NextTileIterator(tree_priority_);
  DCHECK(b_iterator);
  DCHECK(*b_iterator);

  Tile* a_tile = **a_iterator;
  Tile* b_tile = **b_iterator;

  const TilePriority& a_priority =
      a_tile->priority_for_tree_priority(tree_priority_);
  const TilePriority& b_priority =
      b_tile->priority_for_tree_priority(tree_priority_);
  bool prioritize_low_res = tree_priority_ != SMOOTHNESS_TAKES_PRIORITY;

  if (b_priority.resolution != a_priority.resolution) {
    return (prioritize_low_res && b_priority.resolution == LOW_RESOLUTION) ||
           (!prioritize_low_res && b_priority.resolution == HIGH_RESOLUTION) ||
           (a_priority.resolution == NON_IDEAL_RESOLUTION);
  }
  return a_priority.IsHigherPriorityThan(b_priority);
}

}  // namespace cc