summaryrefslogtreecommitdiffstats
path: root/cc/tile_manager.cc
blob: eb5558584a720a06c3726981abcf254942018788 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/tile_manager.h"

#include <algorithm>

#include "base/logging.h"
#include "cc/tile.h"

namespace cc {

TileManager::TileManager(TileManagerClient* client)
  : client_(client)
  , manage_tiles_pending_(false)
{
}

TileManager::~TileManager() {
  // Reset global state and manage. This should cause
  // our memory usage to drop to zero.
  global_state_ = GlobalStateThatImpactsTilePriority();
  ManageTiles();
  DCHECK(tiles_.size() == 0);
}

void TileManager::SetGlobalState(const GlobalStateThatImpactsTilePriority& global_state) {
  global_state_ = global_state;
  ScheduleManageTiles();
}

void TileManager::RegisterTile(Tile* tile) {
  tiles_.push_back(tile);
  ScheduleManageTiles();
}

void TileManager::UnregisterTile(Tile* tile) {
  for (TileVector::iterator it = tiles_.begin(); it != tiles_.end(); it++) {
    if (*it == tile) {
      tiles_.erase(it);
      return;
    }
  }
  DCHECK(false) << "Could not find tile version.";
}

void TileManager::WillModifyTilePriority(Tile*, WhichTree tree, const TilePriority& new_priority) {
  // TODO(nduca): Do something smarter if reprioritization turns out to be
  // costly.
  ScheduleManageTiles();
}

void TileManager::ScheduleManageTiles() {
  if (manage_tiles_pending_)
    return;
  ScheduleManageTiles();
  manage_tiles_pending_ = true;
}

class BinComparator {
public:
  bool operator() (const Tile* a, const Tile* b) const {
    const ManagedTileState& ams = a->managed_state();
    const ManagedTileState& bms = b->managed_state();
    if (ams.bin != bms.bin)
      return ams.bin < bms.bin;

    if (ams.resolution != bms.resolution)
      return ams.resolution < ams.resolution;

    return
      ams.time_to_needed_in_seconds <
      bms.time_to_needed_in_seconds;
  }
};

void TileManager::ManageTiles() {
  // The amount of time for which we want to have prepainting coverage.
  const double prepainting_window_time_seconds = 1.0;
  const double backfling_guard_distance_pixels = 314.0;

  const bool smoothness_takes_priority = global_state_.smoothness_takes_priority;

  // Bin into three categories of tiles: things we need now, things we need soon, and eventually
  for (TileVector::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = *it;
    ManagedTileState& mts = tile->managed_state();
    TilePriority prio;
    if (smoothness_takes_priority)
      prio = tile->priority(ACTIVE_TREE);
    else
      prio = tile->combined_priority();

    mts.resolution = prio.resolution;
    mts.time_to_needed_in_seconds = prio.time_to_needed_in_seconds();

    if (mts.time_to_needed_in_seconds ==
        std::numeric_limits<float>::max()) {
      mts.bin = NEVER_BIN;
      continue;
    }

    if (mts.resolution == NON_IDEAL_RESOLUTION) {
      mts.bin = EVENTUALLY_BIN;
      continue;
    }

    if (mts.time_to_needed_in_seconds == 0 ||
        prio.distance_to_visible_in_pixels < backfling_guard_distance_pixels) {
      mts.bin = NOW_BIN;
      continue;
    }

    if (prio.time_to_needed_in_seconds() < prepainting_window_time_seconds) {
      mts.bin = SOON_BIN;
      continue;
    }

    mts.bin = EVENTUALLY_BIN;
  }

  // Memory limit policy works by mapping some bin states to the NEVER bin.
  TileManagerBin bin_map[NUM_BINS];
  if (global_state_.memory_limit_policy == ALLOW_NOTHING) {
    bin_map[NOW_BIN] = NEVER_BIN;
    bin_map[SOON_BIN] = NEVER_BIN;
    bin_map[EVENTUALLY_BIN] = NEVER_BIN;
    bin_map[NEVER_BIN] = NEVER_BIN;
  } else if (global_state_.memory_limit_policy == ALLOW_ABSOLUTE_MINIMUM) {
    bin_map[NOW_BIN] = NOW_BIN;
    bin_map[SOON_BIN] = NEVER_BIN;
    bin_map[EVENTUALLY_BIN] = NEVER_BIN;
    bin_map[NEVER_BIN] = NEVER_BIN;
  } else if (global_state_.memory_limit_policy == ALLOW_PREPAINT_ONLY) {
    bin_map[NOW_BIN] = NOW_BIN;
    bin_map[SOON_BIN] = SOON_BIN;
    bin_map[EVENTUALLY_BIN] = NEVER_BIN;
    bin_map[NEVER_BIN] = NEVER_BIN;
  } else {
    bin_map[NOW_BIN] = NOW_BIN;
    bin_map[SOON_BIN] = SOON_BIN;
    bin_map[EVENTUALLY_BIN] = NEVER_BIN;
    bin_map[NEVER_BIN] = NEVER_BIN;
  }
  for (TileVector::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = *it;
    TileManagerBin bin = bin_map[tile->managed_state().bin];
    tile->managed_state().bin = bin;
  }

  // Sort by bin.
  std::sort(tiles_.begin(), tiles_.end(), BinComparator());

  // Some memory cannot be released. Figure out which.
  size_t unreleasable_bytes = 0;
  for (TileVector::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = *it;
    if (tile->managed_state().resource_id_can_be_freed)
      unreleasable_bytes += tile->bytes_consumed_if_allocated();
  }

  // Now give memory out to the tiles until we're out, and build
  // the needs-to-be-painted and needs-to-be-freed queues.
  tiles_that_need_to_be_painted_.erase(
      tiles_that_need_to_be_painted_.begin(),
      tiles_that_need_to_be_painted_.end());

  size_t bytes_left = global_state_.memory_limit_in_bytes - unreleasable_bytes;
  for (TileVector::iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
    Tile* tile = *it;
    size_t tile_bytes = tile->bytes_consumed_if_allocated();
    ManagedTileState& managed_tile_state = tile->managed_state();
    if (managed_tile_state.resource_id_can_be_freed)
      continue;
    if (tile_bytes > bytes_left) {
      managed_tile_state.can_use_gpu_memory = false;
      if (managed_tile_state.resource_id && managed_tile_state.resource_id_can_be_freed)
        FreeResourcesForTile(tile);
      continue;
    }
    bytes_left -= tile_bytes;
    managed_tile_state.can_use_gpu_memory = true;
    if (!managed_tile_state.resource_id)
      tiles_that_need_to_be_painted_.push_back(tile);
  }

  // Reverse two tiles_that_need_* vectors such that pop_back gets
  // the highest priority tile.
  std::reverse(
      tiles_that_need_to_be_painted_.begin(),
      tiles_that_need_to_be_painted_.end());

  // Finally, kick the rasterizer.
  ScheduleMorePaintingJobs();
}

void TileManager::FreeResourcesForTile(Tile* tile) {
  DCHECK(!tile->managed_state().can_use_gpu_memory &&
         tile->managed_state().resource_id_can_be_freed);
  // TODO(nduca): Do something intelligent here.
}

void TileManager::ScheduleMorePaintingJobs() {
  // TODO(nduca): The next big thing.
}


}