1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/renderer_host/render_process_host.h"
#include "base/rand_util.h"
#include "base/sys_info.h"
#include "chrome/common/chrome_constants.h"
#include "chrome/common/notification_service.h"
namespace {
unsigned int GetMaxRendererProcessCount() {
// Defines the maximum number of renderer processes according to the
// amount of installed memory as reported by the OS. The table
// values are calculated by assuming that you want the renderers to
// use half of the installed ram and assuming that each tab uses
// ~40MB, however the curve is not linear but piecewise linear with
// interleaved slopes of 3 and 2.
// If you modify this table you need to adjust browser\browser_uitest.cc
// to match the expected number of processes.
static const int kMaxRenderersByRamTier[] = {
3, // less than 256MB
6, // 256MB
9, // 512MB
12, // 768MB
14, // 1024MB
18, // 1280MB
20, // 1536MB
22, // 1792MB
24, // 2048MB
26, // 2304MB
29, // 2560MB
32, // 2816MB
35, // 3072MB
38, // 3328MB
40 // 3584MB
};
static unsigned int max_count = 0;
if (!max_count) {
size_t memory_tier = base::SysInfo::AmountOfPhysicalMemoryMB() / 256;
if (memory_tier >= arraysize(kMaxRenderersByRamTier))
max_count = chrome::kMaxRendererProcessCount;
else
max_count = kMaxRenderersByRamTier[memory_tier];
}
return max_count;
}
// Returns true if the given host is suitable for launching a new view
// associated with the given profile.
// TODO(jabdelmalek): do we want to avoid processes with hung renderers
// or with a large memory consumption?
static bool IsSuitableHost(Profile* profile, RenderProcessHost* host) {
return host->profile() == profile;
}
// the global list of all renderer processes
IDMap<RenderProcessHost> all_hosts;
} // namespace
bool RenderProcessHost::run_renderer_in_process_ = false;
RenderProcessHost::RenderProcessHost(Profile* profile)
: max_page_id_(-1),
notified_termination_(false),
profile_(profile) {
host_id_ = all_hosts.Add(this);
}
RenderProcessHost::~RenderProcessHost() {
}
void RenderProcessHost::Attach(IPC::Channel::Listener* listener,
int routing_id) {
listeners_.AddWithID(listener, routing_id);
}
void RenderProcessHost::Release(int listener_id) {
DCHECK(listeners_.Lookup(listener_id) != NULL);
listeners_.Remove(listener_id);
// Make sure that all associated resource requests are stopped.
CancelResourceRequests(listener_id);
// When no other owners of this object, we can delete ourselves
if (listeners_.IsEmpty()) {
if (!notified_termination_) {
bool close_expected = true;
NotificationService::current()->Notify(
NotificationType::RENDERER_PROCESS_TERMINATED,
Source<RenderProcessHost>(this),
Details<bool>(&close_expected));
notified_termination_ = true;
}
Unregister();
MessageLoop::current()->DeleteSoon(FROM_HERE, this);
}
}
void RenderProcessHost::ReportExpectingClose(int32 listener_id) {
listeners_expecting_close_.insert(listener_id);
}
void RenderProcessHost::UpdateMaxPageID(int32 page_id) {
if (page_id > max_page_id_)
max_page_id_ = page_id;
}
// static
RenderProcessHost::iterator RenderProcessHost::begin() {
return all_hosts.begin();
}
// static
RenderProcessHost::iterator RenderProcessHost::end() {
return all_hosts.end();
}
// static
size_t RenderProcessHost::size() {
return all_hosts.size();
}
// static
RenderProcessHost* RenderProcessHost::FromID(int render_process_id) {
return all_hosts.Lookup(render_process_id);
}
// static
bool RenderProcessHost::ShouldTryToUseExistingProcessHost() {
unsigned int renderer_process_count =
static_cast<unsigned int>(all_hosts.size());
// NOTE: Sometimes it's necessary to create more render processes than
// GetMaxRendererProcessCount(), for instance when we want to create
// a renderer process for a profile that has no existing renderers.
// This is OK in moderation, since the GetMaxRendererProcessCount()
// is conservative.
return run_renderer_in_process() ||
(renderer_process_count >= GetMaxRendererProcessCount());
}
// static
RenderProcessHost* RenderProcessHost::GetExistingProcessHost(Profile* profile) {
// First figure out which existing renderers we can use.
std::vector<RenderProcessHost*> suitable_renderers;
suitable_renderers.reserve(size());
for (iterator iter = begin(); iter != end(); ++iter) {
if (IsSuitableHost(profile, iter->second))
suitable_renderers.push_back(iter->second);
}
// Now pick a random suitable renderer, if we have any.
if (!suitable_renderers.empty()) {
int suitable_count = static_cast<int>(suitable_renderers.size());
int random_index = base::RandInt(0, suitable_count - 1);
return suitable_renderers[random_index];
}
return NULL;
}
void RenderProcessHost::Unregister() {
if (host_id_ >= 0) {
all_hosts.Remove(host_id_);
host_id_ = -1;
}
}
|