1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/speech/speech_recognizer.h"
#include "base/ref_counted.h"
#include "base/scoped_ptr.h"
#include "base/time.h"
#include "chrome/browser/browser_thread.h"
#include "chrome/browser/profiles/profile.h"
#include "chrome/common/net/url_request_context_getter.h"
using media::AudioInputController;
using std::string;
namespace {
// The following constants are related to the volume level indicator shown in
// the UI for recorded audio.
// Multiplier used when new volume is greater than previous level.
const float kUpSmoothingFactor = 0.9f;
// Multiplier used when new volume is lesser than previous level.
const float kDownSmoothingFactor = 0.4f;
const float kAudioMeterMinDb = 10.0f; // Lower bar for volume meter.
const float kAudioMeterDbRange = 25.0f;
} // namespace
namespace speech_input {
const int SpeechRecognizer::kAudioSampleRate = 16000;
const int SpeechRecognizer::kAudioPacketIntervalMs = 100;
const int SpeechRecognizer::kNumAudioChannels = 1;
const int SpeechRecognizer::kNumBitsPerAudioSample = 16;
const int SpeechRecognizer::kNoSpeechTimeoutSec = 8;
const int SpeechRecognizer::kEndpointerEstimationTimeMs = 300;
SpeechRecognizer::SpeechRecognizer(Delegate* delegate,
int caller_id,
const std::string& language,
const std::string& grammar,
const std::string& hardware_info,
const std::string& origin_url)
: delegate_(delegate),
caller_id_(caller_id),
language_(language),
grammar_(grammar),
hardware_info_(hardware_info),
origin_url_(origin_url),
codec_(AudioEncoder::CODEC_SPEEX),
encoder_(NULL),
endpointer_(kAudioSampleRate),
num_samples_recorded_(0),
audio_level_(0.0f) {
endpointer_.set_speech_input_complete_silence_length(
base::Time::kMicrosecondsPerSecond / 2);
endpointer_.set_long_speech_input_complete_silence_length(
base::Time::kMicrosecondsPerSecond);
endpointer_.set_long_speech_length(3 * base::Time::kMicrosecondsPerSecond);
endpointer_.StartSession();
}
SpeechRecognizer::~SpeechRecognizer() {
// Recording should have stopped earlier due to the endpointer or
// |StopRecording| being called.
DCHECK(!audio_controller_.get());
DCHECK(!request_.get() || !request_->HasPendingRequest());
DCHECK(!encoder_.get());
endpointer_.EndSession();
}
bool SpeechRecognizer::StartRecording() {
DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
DCHECK(!audio_controller_.get());
DCHECK(!request_.get() || !request_->HasPendingRequest());
DCHECK(!encoder_.get());
// The endpointer needs to estimate the environment/background noise before
// starting to treat the audio as user input. In |HandleOnData| we wait until
// such time has passed before switching to user input mode.
endpointer_.SetEnvironmentEstimationMode();
encoder_.reset(AudioEncoder::Create(codec_, kAudioSampleRate,
kNumBitsPerAudioSample));
int samples_per_packet = (kAudioSampleRate * kAudioPacketIntervalMs) / 1000;
AudioParameters params(AudioParameters::AUDIO_PCM_LINEAR, kNumAudioChannels,
kAudioSampleRate, kNumBitsPerAudioSample,
samples_per_packet);
audio_controller_ = AudioInputController::Create(this, params);
DCHECK(audio_controller_.get());
VLOG(1) << "SpeechRecognizer starting record.";
num_samples_recorded_ = 0;
audio_controller_->Record();
return true;
}
void SpeechRecognizer::CancelRecognition() {
DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
DCHECK(audio_controller_.get() || request_.get());
// Stop recording if required.
if (audio_controller_.get()) {
VLOG(1) << "SpeechRecognizer stopping record.";
audio_controller_->Close();
audio_controller_ = NULL; // Releases the ref ptr.
}
VLOG(1) << "SpeechRecognizer canceling recognition.";
encoder_.reset();
request_.reset();
}
void SpeechRecognizer::StopRecording() {
DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
// If audio recording has already stopped and we are in recognition phase,
// silently ignore any more calls to stop recording.
if (!audio_controller_.get())
return;
VLOG(1) << "SpeechRecognizer stopping record.";
audio_controller_->Close();
audio_controller_ = NULL; // Releases the ref ptr.
encoder_->Flush();
delegate_->DidCompleteRecording(caller_id_);
// Since the http request takes a single string as POST data, allocate
// one and copy over bytes from the audio buffers to the string.
// And If we haven't got any audio yet end the recognition sequence here.
string mime_type = encoder_->mime_type();
string data;
encoder_->GetEncodedData(&data);
encoder_.reset();
if (data.empty()) {
// Guard against the delegate freeing us until we finish our job.
scoped_refptr<SpeechRecognizer> me(this);
delegate_->DidCompleteRecognition(caller_id_);
} else {
DCHECK(!request_.get());
request_.reset(new SpeechRecognitionRequest(
Profile::GetDefaultRequestContext(), this));
request_->Send(language_, grammar_, hardware_info_, origin_url_,
mime_type, data);
}
}
void SpeechRecognizer::ReleaseAudioBuffers() {
}
// Invoked in the audio thread.
void SpeechRecognizer::OnError(AudioInputController* controller,
int error_code) {
BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
NewRunnableMethod(this,
&SpeechRecognizer::HandleOnError,
error_code));
}
void SpeechRecognizer::HandleOnError(int error_code) {
LOG(WARNING) << "SpeechRecognizer::HandleOnError, code=" << error_code;
// Check if we are still recording before canceling recognition, as
// recording might have been stopped after this error was posted to the queue
// by |OnError|.
if (!audio_controller_.get())
return;
InformErrorAndCancelRecognition(RECOGNIZER_ERROR_CAPTURE);
}
void SpeechRecognizer::OnData(AudioInputController* controller,
const uint8* data, uint32 size) {
if (size == 0) // This could happen when recording stops and is normal.
return;
string* str_data = new string(reinterpret_cast<const char*>(data), size);
BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
NewRunnableMethod(this,
&SpeechRecognizer::HandleOnData,
str_data));
}
void SpeechRecognizer::HandleOnData(string* data) {
// Check if we are still recording and if not discard this buffer, as
// recording might have been stopped after this buffer was posted to the queue
// by |OnData|.
if (!audio_controller_.get()) {
delete data;
return;
}
const short* samples = reinterpret_cast<const short*>(data->data());
DCHECK((data->length() % sizeof(short)) == 0);
int num_samples = data->length() / sizeof(short);
encoder_->Encode(samples, num_samples);
float rms;
endpointer_.ProcessAudio(samples, num_samples, &rms);
delete data;
num_samples_recorded_ += num_samples;
if (endpointer_.IsEstimatingEnvironment()) {
// Check if we have gathered enough audio for the endpointer to do
// environment estimation and should move on to detect speech/end of speech.
if (num_samples_recorded_ >= (kEndpointerEstimationTimeMs *
kAudioSampleRate) / 1000) {
endpointer_.SetUserInputMode();
delegate_->DidCompleteEnvironmentEstimation(caller_id_);
}
return; // No more processing since we are still estimating environment.
}
// Check if we have waited too long without hearing any speech.
if (!endpointer_.DidStartReceivingSpeech() &&
num_samples_recorded_ >= kNoSpeechTimeoutSec * kAudioSampleRate) {
InformErrorAndCancelRecognition(RECOGNIZER_ERROR_NO_SPEECH);
return;
}
// Calculate the input volume to display in the UI, smoothing towards the
// new level.
float level = (rms - kAudioMeterMinDb) / kAudioMeterDbRange;
level = std::min(std::max(0.0f, level), 1.0f);
if (level > audio_level_) {
audio_level_ += (level - audio_level_) * kUpSmoothingFactor;
} else {
audio_level_ += (level - audio_level_) * kDownSmoothingFactor;
}
delegate_->SetInputVolume(caller_id_, audio_level_);
if (endpointer_.speech_input_complete()) {
StopRecording();
}
// TODO(satish): Once we have streaming POST, start sending the data received
// here as POST chunks.
}
void SpeechRecognizer::SetRecognitionResult(
bool error, const SpeechInputResultArray& result) {
if (result.empty()) {
InformErrorAndCancelRecognition(RECOGNIZER_ERROR_NO_RESULTS);
return;
}
delegate_->SetRecognitionResult(caller_id_, error, result);
// Guard against the delegate freeing us until we finish our job.
scoped_refptr<SpeechRecognizer> me(this);
delegate_->DidCompleteRecognition(caller_id_);
}
void SpeechRecognizer::InformErrorAndCancelRecognition(ErrorCode error) {
CancelRecognition();
// Guard against the delegate freeing us until we finish our job.
scoped_refptr<SpeechRecognizer> me(this);
delegate_->OnRecognizerError(caller_id_, error);
}
} // namespace speech_input
|