1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/sync/util/nigori.h"
#if defined(OS_WIN)
#include <winsock2.h> // for htonl
#endif
#include <sstream>
#include <vector>
#include "base/base64.h"
#include "base/crypto/encryptor.h"
#include "base/hmac.h"
#include "base/logging.h"
#include "base/rand_util.h"
#include "base/string_util.h"
using base::Base64Encode;
using base::Base64Decode;
using base::Encryptor;
using base::HMAC;
using base::RandInt;
using base::SymmetricKey;
namespace browser_sync {
// NigoriStream simplifies the concatenation operation of the Nigori protocol.
class NigoriStream {
public:
// Append the big-endian representation of the length of |value| with 32 bits,
// followed by |value| itself to the stream.
NigoriStream& operator<<(const std::string& value) {
uint32 size = htonl(value.size());
stream_.write((char *) &size, sizeof(uint32));
stream_ << value;
return *this;
}
// Append the big-endian representation of the length of |type| with 32 bits,
// followed by the big-endian representation of the value of |type|, with 32
// bits, to the stream.
NigoriStream& operator<<(const Nigori::Type type) {
uint32 size = htonl(sizeof(uint32));
stream_.write((char *) &size, sizeof(uint32));
uint32 value = htonl(type);
stream_.write((char *) &value, sizeof(uint32));
return *this;
}
std::string str() {
return stream_.str();
}
private:
std::ostringstream stream_;
};
// static
const char Nigori::kSaltSalt[] = "saltsalt";
Nigori::Nigori(const std::string& hostname)
: hostname_(hostname) {
}
Nigori::~Nigori() {
}
bool Nigori::Init(const std::string& username, const std::string& password) {
username_ = username;
password_ = password;
NigoriStream salt_password;
salt_password << username << hostname_;
// Suser = PBKDF2(Username || Servername, "saltsalt", Nsalt, 8)
scoped_ptr<SymmetricKey> user_salt(SymmetricKey::DeriveKeyFromPassword(
SymmetricKey::HMAC_SHA1, salt_password.str(),
kSaltSalt,
kSaltIterations,
kSaltKeySizeInBits));
DCHECK(user_salt.get());
std::string raw_user_salt;
user_salt->GetRawKey(&raw_user_salt);
// Kuser = PBKDF2(P, Suser, Nuser, 16)
user_key_.reset(SymmetricKey::DeriveKeyFromPassword(SymmetricKey::AES,
password, raw_user_salt, kUserIterations, kDerivedKeySizeInBits));
DCHECK(user_key_.get());
// Kenc = PBKDF2(P, Suser, Nenc, 16)
encryption_key_.reset(SymmetricKey::DeriveKeyFromPassword(SymmetricKey::AES,
password, raw_user_salt, kEncryptionIterations, kDerivedKeySizeInBits));
DCHECK(encryption_key_.get());
// Kmac = PBKDF2(P, Suser, Nmac, 16)
mac_key_.reset(SymmetricKey::DeriveKeyFromPassword(
SymmetricKey::HMAC_SHA1, password, raw_user_salt, kSigningIterations,
kDerivedKeySizeInBits));
DCHECK(mac_key_.get());
return true;
}
// Permute[Kenc,Kmac](type || name)
bool Nigori::Permute(Type type, const std::string& name,
std::string* permuted) const {
DCHECK_LT(0U, name.size());
NigoriStream plaintext;
plaintext << type << name;
Encryptor encryptor;
if (!encryptor.Init(encryption_key_.get(), Encryptor::CBC,
std::string(kIvSize, 0)))
return false;
std::string ciphertext;
if (!encryptor.Encrypt(plaintext.str(), &ciphertext))
return false;
std::string raw_mac_key;
if (!mac_key_->GetRawKey(&raw_mac_key))
return false;
HMAC hmac(HMAC::SHA256);
if (!hmac.Init(raw_mac_key))
return false;
std::vector<unsigned char> hash(kHashSize);
if (!hmac.Sign(ciphertext, &hash[0], hash.size()))
return false;
std::string output;
output.assign(ciphertext);
output.append(hash.begin(), hash.end());
return Base64Encode(output, permuted);
}
std::string GenerateRandomString(size_t size) {
// TODO(albertb): Use a secure random function.
std::string random(size, 0);
for (size_t i = 0; i < size; ++i)
random[i] = RandInt(0, 0xff);
return random;
}
// Enc[Kenc,Kmac](value)
bool Nigori::Encrypt(const std::string& value, std::string* encrypted) const {
DCHECK_LT(0U, value.size());
std::string iv = GenerateRandomString(kIvSize);
Encryptor encryptor;
if (!encryptor.Init(encryption_key_.get(), Encryptor::CBC, iv))
return false;
std::string ciphertext;
if (!encryptor.Encrypt(value, &ciphertext))
return false;
std::string raw_mac_key;
if (!mac_key_->GetRawKey(&raw_mac_key))
return false;
HMAC hmac(HMAC::SHA256);
if (!hmac.Init(raw_mac_key))
return false;
std::vector<unsigned char> hash(kHashSize);
if (!hmac.Sign(ciphertext, &hash[0], hash.size()))
return false;
std::string output;
output.assign(iv);
output.append(ciphertext);
output.append(hash.begin(), hash.end());
return Base64Encode(output, encrypted);
}
bool Nigori::Decrypt(const std::string& encrypted, std::string* value) const {
std::string input;
if (!Base64Decode(encrypted, &input))
return false;
if (input.size() < kIvSize * 2 + kHashSize)
return false;
// The input is:
// * iv (16 bytes)
// * ciphertext (multiple of 16 bytes)
// * hash (32 bytes)
std::string iv(input.substr(0, kIvSize));
std::string ciphertext(input.substr(kIvSize,
input.size() - (kIvSize + kHashSize)));
std::string hash(input.substr(input.size() - kHashSize, kHashSize));
std::string raw_mac_key;
if (!mac_key_->GetRawKey(&raw_mac_key))
return false;
HMAC hmac(HMAC::SHA256);
if (!hmac.Init(raw_mac_key))
return false;
std::vector<unsigned char> expected(kHashSize);
if (!hmac.Sign(ciphertext, &expected[0], expected.size()))
return false;
if (hash.compare(0, hash.size(),
reinterpret_cast<char *>(&expected[0]),
expected.size()))
return false;
Encryptor encryptor;
if (!encryptor.Init(encryption_key_.get(), Encryptor::CBC, iv))
return false;
std::string plaintext;
if (!encryptor.Decrypt(ciphertext, value))
return false;
return true;
}
} // namespace browser_sync
|