summaryrefslogtreecommitdiffstats
path: root/chrome/common/string_ordinal.cc
blob: 8261ebc1c61a5ef2b45d68590a9f9c3241f10b0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/common/string_ordinal.h"

#include <algorithm>
#include <cstddef>

#include "base/basictypes.h"
#include "base/logging.h"

namespace {

// Constants for StringOrdinal digits.
const char kZeroDigit = 'a';
const char kMinDigit = 'b';
const char kMidDigit = 'n';
const char kMaxDigit = 'z';
const int kMidDigitValue = kMidDigit - kZeroDigit;
const int kMaxDigitValue = kMaxDigit - kZeroDigit;
const int kRadix = kMaxDigitValue + 1;
COMPILE_ASSERT(kMidDigitValue == 13, kMidDigitValue_incorrect);
COMPILE_ASSERT(kMaxDigitValue == 25, kMaxDigitValue_incorrect);
COMPILE_ASSERT(kRadix == 26, kRadix_incorrect);

// Helper Functions

// Returns the length that string value.substr(0, length) would be with
// trailing zeros removed.
size_t GetLengthWithoutTrailingZeros(const std::string& value, size_t length) {
  DCHECK(!value.empty());

  size_t end_position = value.find_last_not_of(kZeroDigit, length - 1);

  // If no non kZeroDigit is found then the string is a string of all zeros
  // digits so we return 0 as the correct length.
  if (end_position == std::string::npos)
    return 0;

  return end_position + 1;
}

// Return the digit value at position i, padding with kZeroDigit if required.
int GetPositionValue(const std::string& str, size_t i) {
  return (i < str.length()) ? (str[i] - kZeroDigit) : 0;
}

// Add kMidDigitValue to the value at position index. This returns false if
// adding the half results in an overflow past the first digit, otherwise it
// returns true. This is used by ComputeMidpoint.
bool AddHalf(size_t position, std::string& value) {
  DCHECK_GT(position, 0U);
  DCHECK_LT(position, value.length());

  // We can't perform this operation directly on the string because
  // overflow can occur and mess up the values.
  int new_position_value = value[position] + kMidDigitValue;

  if (new_position_value <= kMaxDigit) {
    value[position] = new_position_value;
  } else {
    value[position] = new_position_value - kRadix;
    ++value[position - 1];

    for (size_t i = position - 1; value[i] > kMaxDigit; --i) {
      if (i == 0U) {
        // If the first digit is too large we have no previous digit
        // to increase, so we fail.
        return false;
      }
      value[i] -= kRadix;
      ++value[i - 1];
    }
  }

  return true;
}

// Drops off the last digit of value and then all trailing zeros iff that
// doesn't change its ordering as greater than |start|.
void DropUnneededDigits(const std::string& start, std::string* value) {
  CHECK_GT(*value, start);

  size_t drop_length = GetLengthWithoutTrailingZeros(*value, value->length());
  // See if the value can have its last digit removed without affecting
  // the ordering.
  if (drop_length > 1) {
    // We must drop the trailing zeros before comparing |shorter_value| to
    // |start| because if we don't we may have |shorter_value|=|start|+|a|*
    // where |shorter_value| > |start| but not when it drops the trailing |a|s
    // to become a valid StringOrdinal value.
    int truncated_length = GetLengthWithoutTrailingZeros(*value,
                                                         drop_length - 1);

    if (truncated_length != 0 && value->compare(0, truncated_length, start) > 0)
      drop_length = truncated_length;
  }

  value->resize(drop_length);
}

// Compute the midpoint string that is between |start| and |end|.
std::string ComputeMidpoint(const std::string& start,
                            const std::string& end) {
  size_t max_size = std::max(start.length(), end.length()) + 1;
  std::string midpoint(max_size, kZeroDigit);

  bool add_half = false;
  for (size_t i = 0; i < max_size; ++i) {
    int char_value = GetPositionValue(start, i);
    char_value += GetPositionValue(end, i);

    midpoint[i] += (char_value / 2);
    if (add_half) {
      // AddHalf only returns false if (midpoint[0] > kMaxDigit), which
      // implies the midpoint of two strings in (0, 1) is >= 1, which is a
      // contradiction.
      CHECK(AddHalf(i, midpoint));
    }

    add_half = (char_value % 2 == 1);
  }
  DCHECK(!add_half);

  return midpoint;
}

// Create a StringOrdinal that is lexigraphically greater than |start| and
// lexigraphically less than |end|. The returned StringOrdinal will be roughly
// between |start| and |end|.
StringOrdinal CreateStringOrdinalBetween(const StringOrdinal& start,
                                         const StringOrdinal& end) {
  CHECK(start.IsValid());
  CHECK(end.IsValid());
  CHECK(start.LessThan(end));
  const std::string& start_string = start.ToString();
  const std::string& end_string = end.ToString();
  DCHECK_LT(start_string, end_string);

  std::string midpoint = ComputeMidpoint(start_string, end_string);

  DropUnneededDigits(start_string, &midpoint);

  DCHECK_GT(midpoint, start_string);
  DCHECK_LT(midpoint, end_string);

  StringOrdinal midpoint_ordinal(midpoint);
  DCHECK(midpoint_ordinal.IsValid());
  return midpoint_ordinal;
}

// Returns true iff the input string matches the format [a-z]*[b-z].
bool IsValidStringOrdinal(const std::string& value) {
  if (value.empty())
    return false;

  for (size_t i = 0; i < value.length(); ++i) {
    if (value[i] < kZeroDigit || value[i] > kMaxDigit)
      return false;
  }

  return value[value.length() - 1] != kZeroDigit;
}

} // namespace

StringOrdinal::StringOrdinal(const std::string& string_ordinal)
    : string_ordinal_(string_ordinal),
      is_valid_(IsValidStringOrdinal(string_ordinal_)) {
}

StringOrdinal::StringOrdinal() : string_ordinal_(""),
                                 is_valid_(false) {
}

StringOrdinal StringOrdinal::CreateInitialOrdinal() {
  return StringOrdinal(std::string(1, kMidDigit));
}

bool StringOrdinal::IsValid() const {
  return is_valid_;
}

bool StringOrdinal::LessThan(const StringOrdinal& other) const {
  CHECK(IsValid());
  CHECK(other.IsValid());
  return string_ordinal_ < other.string_ordinal_;
}

bool StringOrdinal::GreaterThan(const StringOrdinal& other) const {
  CHECK(IsValid());
  CHECK(other.IsValid());
  return string_ordinal_ > other.string_ordinal_;
}

bool StringOrdinal::Equal(const StringOrdinal& other) const {
  CHECK(IsValid());
  CHECK(other.IsValid());
  return string_ordinal_ == other.string_ordinal_;
}

bool StringOrdinal::EqualOrBothInvalid(const StringOrdinal& other) const {
  if (!IsValid() && !other.IsValid())
    return true;

  if (!IsValid() || !other.IsValid())
    return false;

  return Equal(other);
}

StringOrdinal StringOrdinal::CreateBetween(const StringOrdinal& other) const {
  CHECK(IsValid());
  CHECK(other.IsValid());
  CHECK(!Equal(other));

  if (LessThan(other)) {
    return CreateStringOrdinalBetween(*this, other);
  } else {
    return CreateStringOrdinalBetween(other, *this);
  }
}

StringOrdinal StringOrdinal::CreateBefore() const {
  CHECK(IsValid());
  // Create the smallest valid StringOrdinal of the appropriate length
  // to be the minimum boundary.
  const size_t length = string_ordinal_.length();
  std::string start(length, kZeroDigit);
  start[length - 1] = kMinDigit;
  if (start == string_ordinal_) {
    start[length - 1] = kZeroDigit;
    start += kMinDigit;
  }

  // Even though |start| is already a valid StringOrdinal that is less
  // than |*this|, we don't return it because we wouldn't have much space in
  // front of it to insert potential future values.
  return CreateBetween(StringOrdinal(start));
}

StringOrdinal StringOrdinal::CreateAfter() const {
  CHECK(IsValid());
  // Create the largest valid StringOrdinal of the appropriate length to be
  // the maximum boundary.
  std::string end(string_ordinal_.length(), kMaxDigit);
  if (end == string_ordinal_)
    end += kMaxDigit;

  // Even though |end| is already a valid StringOrdinal that is greater than
  // |*this|, we don't return it because we wouldn't have much space after
  // it to insert potential future values.
  return CreateBetween(StringOrdinal(end));
}

std::string StringOrdinal::ToString() const {
  CHECK(IsValid());
  return string_ordinal_;
}

bool StringOrdinalLessThan::operator() (const StringOrdinal& lhs,
                                        const StringOrdinal& rhs) const {
  return lhs.LessThan(rhs);
}

bool StringOrdinal::operator==(const StringOrdinal& rhs) const {
  return Equal(rhs);
}