summaryrefslogtreecommitdiffstats
path: root/chrome/renderer/spellchecker/spellcheck_worditerator.cc
blob: d6e6abe1db9911d2fb172c0fcf3c83c294676ebc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Implements a custom word iterator used for our spellchecker.

#include "chrome/renderer/spellchecker/spellcheck_worditerator.h"

#include <map>
#include <string>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/stringprintf.h"
#include "base/utf_string_conversions.h"
#include "chrome/renderer/spellchecker/spellcheck.h"
#include "unicode/normlzr.h"
#include "unicode/schriter.h"
#include "unicode/uscript.h"
#include "unicode/ulocdata.h"

// SpellcheckCharAttribute implementation:

SpellcheckCharAttribute::SpellcheckCharAttribute()
    : script_code_(USCRIPT_LATIN) {
}

SpellcheckCharAttribute::~SpellcheckCharAttribute() {
}

void SpellcheckCharAttribute::SetDefaultLanguage(const std::string& language) {
  CreateRuleSets(language);
}

string16 SpellcheckCharAttribute::GetRuleSet(bool allow_contraction) const {
  return allow_contraction ?
      ruleset_allow_contraction_ : ruleset_disallow_contraction_;
}

void SpellcheckCharAttribute::CreateRuleSets(const std::string& language) {
  // The template for our custom rule sets, which is based on the word-break
  // rules of ICU 4.0:
  // <http://source.icu-project.org/repos/icu/icu/tags/release-4-0/source/data/brkitr/word.txt>.
  // The major differences from the original one are listed below:
  // * It discards comments in the original rules.
  // * It discards characters not needed by our spellchecker (e.g. numbers,
  //   punctuation characters, Hiraganas, Katakanas, CJK Ideographs, and so on).
  // * It allows customization of the $ALetter value (i.e. word characters).
  // * It allows customization of the $ALetterPlus value (i.e. whether or not to
  //   use the dictionary data).
  // * It allows choosing whether or not to split a text at contraction
  //   characters.
  // This template only changes the forward-iteration rules. So, calling
  // ubrk_prev() returns the same results as the original template.
  static const char kRuleTemplate[] =
      "!!chain;"
      "$CR           = [\\p{Word_Break = CR}];"
      "$LF           = [\\p{Word_Break = LF}];"
      "$Newline      = [\\p{Word_Break = Newline}];"
      "$Extend       = [\\p{Word_Break = Extend}];"
      "$Format       = [\\p{Word_Break = Format}];"
      "$Katakana     = [\\p{Word_Break = Katakana}];"
      // Not all the characters in a given script are ALetter.
      // For instance, U+05F4 is MidLetter. So, this may be
      // better, but it leads to an empty set error in Thai.
      // "$ALetter   = [[\\p{script=%s}] & [\\p{Word_Break = ALetter}]];"
      "$ALetter      = [\\p{script=%s}%s];"
      "$MidNumLet    = [\\p{Word_Break = MidNumLet}];"
      "$MidLetter    = [\\p{Word_Break = MidLetter}%s];"
      "$MidNum       = [\\p{Word_Break = MidNum}];"
      "$Numeric      = [\\p{Word_Break = Numeric}];"
      "$ExtendNumLet = [\\p{Word_Break = ExtendNumLet}];"

      "$Control        = [\\p{Grapheme_Cluster_Break = Control}]; "
      "%s"  // ALetterPlus

      "$KatakanaEx     = $Katakana     ($Extend |  $Format)*;"
      "$ALetterEx      = $ALetterPlus  ($Extend |  $Format)*;"
      "$MidNumLetEx    = $MidNumLet    ($Extend |  $Format)*;"
      "$MidLetterEx    = $MidLetter    ($Extend |  $Format)*;"
      "$MidNumEx       = $MidNum       ($Extend |  $Format)*;"
      "$NumericEx      = $Numeric      ($Extend |  $Format)*;"
      "$ExtendNumLetEx = $ExtendNumLet ($Extend |  $Format)*;"

      "$Hiragana       = [\\p{script=Hiragana}];"
      "$Ideographic    = [\\p{Ideographic}];"
      "$HiraganaEx     = $Hiragana     ($Extend |  $Format)*;"
      "$IdeographicEx  = $Ideographic  ($Extend |  $Format)*;"

      "!!forward;"
      "$CR $LF;"
      "[^$CR $LF $Newline]? ($Extend |  $Format)+;"
      "$ALetterEx {200};"
      "$ALetterEx $ALetterEx {200};"
      "%s"  // (Allow|Disallow) Contraction

      "!!reverse;"
      "$BackALetterEx     = ($Format | $Extend)* $ALetterPlus;"
      "$BackMidNumLetEx   = ($Format | $Extend)* $MidNumLet;"
      "$BackNumericEx     = ($Format | $Extend)* $Numeric;"
      "$BackMidNumEx      = ($Format | $Extend)* $MidNum;"
      "$BackMidLetterEx   = ($Format | $Extend)* $MidLetter;"
      "$BackKatakanaEx    = ($Format | $Extend)* $Katakana;"
      "$BackExtendNumLetEx= ($Format | $Extend)* $ExtendNumLet;"
      "$LF $CR;"
      "($Format | $Extend)*  [^$CR $LF $Newline]?;"
      "$BackALetterEx $BackALetterEx;"
      "$BackALetterEx ($BackMidLetterEx | $BackMidNumLetEx) $BackALetterEx;"
      "$BackNumericEx $BackNumericEx;"
      "$BackNumericEx $BackALetterEx;"
      "$BackALetterEx $BackNumericEx;"
      "$BackNumericEx ($BackMidNumEx | $BackMidNumLetEx) $BackNumericEx;"
      "$BackKatakanaEx $BackKatakanaEx;"
      "$BackExtendNumLetEx ($BackALetterEx | $BackNumericEx |"
      " $BackKatakanaEx | $BackExtendNumLetEx);"
      "($BackALetterEx | $BackNumericEx | $BackKatakanaEx)"
      " $BackExtendNumLetEx;"

      "!!safe_reverse;"
      "($Extend | $Format)+ .?;"
      "($MidLetter | $MidNumLet) $BackALetterEx;"
      "($MidNum | $MidNumLet) $BackNumericEx;"

      "!!safe_forward;"
      "($Extend | $Format)+ .?;"
      "($MidLetterEx | $MidNumLetEx) $ALetterEx;"
      "($MidNumEx | $MidNumLetEx) $NumericEx;";

  // Retrieve the script codes used by the given language from ICU. When the
  // given language consists of two or more scripts, we just use the first
  // script. The size of returned script codes is always < 8. Therefore, we use
  // an array of size 8 so we can include all script codes without insufficient
  // buffer errors.
  UErrorCode error = U_ZERO_ERROR;
  UScriptCode script_code[8];
  int scripts = uscript_getCode(language.c_str(), script_code,
                                arraysize(script_code), &error);
  if (U_SUCCESS(error) && scripts >= 1)
    script_code_ = script_code[0];

  // Retrieve the values for $ALetter and $ALetterPlus. We use the dictionary
  // only for the languages which need it (i.e. Korean and Thai) to prevent ICU
  // from returning dictionary words (i.e. Korean or Thai words) for languages
  // which don't need them.
  const char* aletter = uscript_getName(script_code_);
  if (!aletter)
    aletter = "Latin";

  const char kWithDictionary[] =
      "$dictionary   = [:LineBreak = Complex_Context:];"
      "$ALetterPlus  = [$ALetter [$dictionary-$Extend-$Control]];";
  const char kWithoutDictionary[] = "$ALetterPlus  = $ALetter;";
  const char* aletter_plus = kWithoutDictionary;
  if (script_code_ == USCRIPT_HANGUL || script_code_ == USCRIPT_THAI)
    aletter_plus = kWithDictionary;

  // Treat numbers as word characters except for Arabic and Hebrew.
  const char* aletter_extra = " [0123456789]";
  if (script_code_ == USCRIPT_HEBREW || script_code_ == USCRIPT_ARABIC)
    aletter_extra = "";

  const char kMidLetterExtra[] = "";
  // For Hebrew, treat single/double quoation marks as MidLetter.
  const char kMidLetterExtraHebrew[] = "\"'";
  const char* midletter_extra = kMidLetterExtra;
  if (script_code_ == USCRIPT_HEBREW)
    midletter_extra = kMidLetterExtraHebrew;

  // Create two custom rule-sets: one allows contraction and the other does not.
  // We save these strings in UTF-16 so we can use it without conversions. (ICU
  // needs UTF-16 strings.)
  const char kAllowContraction[] =
      "$ALetterEx ($MidLetterEx | $MidNumLetEx) $ALetterEx {200};";
  const char kDisallowContraction[] = "";

  ruleset_allow_contraction_ = ASCIIToUTF16(
      base::StringPrintf(kRuleTemplate,
                         aletter,
                         aletter_extra,
                         midletter_extra,
                         aletter_plus,
                         kAllowContraction));
  ruleset_disallow_contraction_ = ASCIIToUTF16(
      base::StringPrintf(kRuleTemplate,
                         aletter,
                         aletter_extra,
                         midletter_extra,
                         aletter_plus,
                         kDisallowContraction));
}

bool SpellcheckCharAttribute::OutputChar(UChar c, string16* output) const {
  // Call the language-specific function if necessary.
  // Otherwise, we call the default one.
  switch (script_code_) {
    case USCRIPT_ARABIC:
      return OutputArabic(c, output);

    case USCRIPT_HANGUL:
      return OutputHangul(c, output);

    case USCRIPT_HEBREW:
      return OutputHebrew(c, output);

    default:
      return OutputDefault(c, output);
  }
}

bool SpellcheckCharAttribute::OutputArabic(UChar c, string16* output) const {
  // Discard characters not from Arabic alphabets. We also discard vowel marks
  // of Arabic (Damma, Fatha, Kasra, etc.) to prevent our Arabic dictionary from
  // marking an Arabic word including vowel marks as misspelled. (We need to
  // check these vowel marks manually and filter them out since their script
  // codes are USCRIPT_ARABIC.)
  if (0x0621 <= c && c <= 0x064D)
    output->push_back(c);
  return true;
}

bool SpellcheckCharAttribute::OutputHangul(UChar c, string16* output) const {
  // Decompose a Hangul character to a Hangul vowel and consonants used by our
  // spellchecker. A Hangul character of Unicode is a ligature consisting of a
  // Hangul vowel and consonants, e.g. U+AC01 "Gag" consists of U+1100 "G",
  // U+1161 "a", and U+11A8 "g". That is, we can treat each Hangul character as
  // a point of a cubic linear space consisting of (first consonant, vowel, last
  // consonant). Therefore, we can compose a Hangul character from a vowel and
  // two consonants with linear composition:
  //   character =  0xAC00 +
  //                (first consonant - 0x1100) * 28 * 21 +
  //                (vowel           - 0x1161) * 28 +
  //                (last consonant  - 0x11A7);
  // We can also decompose a Hangul character with linear decomposition:
  //   first consonant = (character - 0xAC00) / 28 / 21;
  //   vowel           = (character - 0xAC00) / 28 % 21;
  //   last consonant  = (character - 0xAC00) % 28;
  // This code is copied from Unicode Standard Annex #15
  // <http://unicode.org/reports/tr15> and added some comments.
  const int kSBase = 0xAC00;  // U+AC00: the top of Hangul characters.
  const int kLBase = 0x1100;  // U+1100: the top of Hangul first consonants.
  const int kVBase = 0x1161;  // U+1161: the top of Hangul vowels.
  const int kTBase = 0x11A7;  // U+11A7: the top of Hangul last consonants.
  const int kLCount = 19;     // The number of Hangul first consonants.
  const int kVCount = 21;     // The number of Hangul vowels.
  const int kTCount = 28;     // The number of Hangul last consonants.
  const int kNCount = kVCount * kTCount;
  const int kSCount = kLCount * kNCount;

  int index = c - kSBase;
  if (index < 0 || index >= kSBase + kSCount) {
    // This is not a Hangul syllable. Call the default output function since we
    // should output this character when it is a Hangul syllable.
    return OutputDefault(c, output);
  }

  // This is a Hangul character. Decompose this characters into Hangul vowels
  // and consonants.
  int l = kLBase + index / kNCount;
  int v = kVBase + (index % kNCount) / kTCount;
  int t = kTBase + index % kTCount;
  output->push_back(l);
  output->push_back(v);
  if (t != kTBase)
    output->push_back(t);
  return true;
}

bool SpellcheckCharAttribute::OutputHebrew(UChar c, string16* output) const {
  // Discard characters except Hebrew alphabets. We also discard Hebrew niqquds
  // to prevent our Hebrew dictionary from marking a Hebrew word including
  // niqquds as misspelled. (Same as Arabic vowel marks, we need to check
  // niqquds manually and filter them out since their script codes are
  // USCRIPT_HEBREW.)
  // Pass through ASCII single/double quotation marks and Hebrew Geresh and
  // Gershayim.
  if ((0x05D0 <= c && c <= 0x05EA) || c == 0x22 || c == 0x27 ||
      c == 0x05F4 || c == 0x05F3)
    output->push_back(c);
  return true;
}

bool SpellcheckCharAttribute::OutputDefault(UChar c, string16* output) const {
  // Check the script code of this character and output only if it is the one
  // used by the spellchecker language.
  UErrorCode status = U_ZERO_ERROR;
  UScriptCode script_code = uscript_getScript(c, &status);
  if (script_code == script_code_ || script_code == USCRIPT_COMMON)
    output->push_back(c);
  return true;
}

// SpellcheckWordIterator implementation:

SpellcheckWordIterator::SpellcheckWordIterator()
    : text_(NULL),
      length_(0),
      position_(UBRK_DONE),
      attribute_(NULL),
      iterator_(NULL) {
}

SpellcheckWordIterator::~SpellcheckWordIterator() {
  Reset();
}

bool SpellcheckWordIterator::Initialize(
    const SpellcheckCharAttribute* attribute,
    bool allow_contraction) {
  // Create a custom ICU break iterator with empty text used in this object. (We
  // allow setting text later so we can re-use this iterator.)
  DCHECK(attribute);
  UErrorCode open_status = U_ZERO_ERROR;
  UParseError parse_status;
  string16 rule(attribute->GetRuleSet(allow_contraction));
  iterator_ = ubrk_openRules(rule.c_str(), rule.length(), NULL, 0,
                             &parse_status, &open_status);
  if (U_FAILURE(open_status))
    return false;

  // Set the character attributes so we can normalize the words extracted by
  // this iterator.
  attribute_ = attribute;
  return true;
}

bool SpellcheckWordIterator::IsInitialized() const {
  // Return true if we have an ICU custom iterator.
  return !!iterator_;
}

bool SpellcheckWordIterator::SetText(const char16* text, size_t length) {
  DCHECK(!!iterator_);

  // Set the text to be split by this iterator.
  UErrorCode status = U_ZERO_ERROR;
  ubrk_setText(iterator_, text, length, &status);
  if (U_FAILURE(status))
    return false;

  // Retrieve the position to the first word in this text. We return false if
  // this text does not have any words. (For example, The input text consists
  // only of Chinese characters while the spellchecker language is English.)
  position_ = ubrk_first(iterator_);
  if (position_ == UBRK_DONE)
    return false;

  text_ = text;
  length_ = static_cast<int>(length);
  return true;
}

bool SpellcheckWordIterator::GetNextWord(string16* word_string,
                                         int* word_start,
                                         int* word_length) {
  DCHECK(!!text_ && length_ > 0);

  word_string->clear();
  *word_start = 0;
  *word_length = 0;

  if (!text_ || position_ == UBRK_DONE)
    return false;

  // Find a word that can be checked for spelling. Our rule sets filter out
  // invalid words (e.g. numbers and characters not supported by the
  // spellchecker language) so this ubrk_getRuleStatus() call returns
  // UBRK_WORD_NONE when this iterator finds an invalid word. So, we skip such
  // words until we can find a valid word or reach the end of the input string.
  int next = ubrk_next(iterator_);
  while (next != UBRK_DONE) {
    if (ubrk_getRuleStatus(iterator_) != UBRK_WORD_NONE) {
      if (Normalize(position_, next - position_, word_string)) {
        *word_start = position_;
        *word_length = next - position_;
        position_ = next;
        return true;
      }
    }
    position_ = next;
    next = ubrk_next(iterator_);
  }

  // There aren't any more words in the given text. Set the position to
  // UBRK_DONE to prevent from calling ubrk_next() next time when this function
  // is called.
  position_ = UBRK_DONE;
  return false;
}

void SpellcheckWordIterator::Reset() {
  if (iterator_) {
    ubrk_close(iterator_);
    iterator_ = NULL;
  }
}

bool SpellcheckWordIterator::Normalize(int input_start,
                                       int input_length,
                                       string16* output_string) const {
  // We use NFKC (Normalization Form, Compatible decomposition, followed by
  // canonical Composition) defined in Unicode Standard Annex #15 to normalize
  // this token because it it the most suitable normalization algorithm for our
  // spellchecker. Nevertheless, it is not a perfect algorithm for our
  // spellchecker and we need manual normalization as well. The normalized
  // text does not have to be NUL-terminated since its characters are copied to
  // string16, which adds a NUL character when we need.
  icu::UnicodeString input(FALSE, &text_[input_start], input_length);
  UErrorCode status = U_ZERO_ERROR;
  icu::UnicodeString output;
  icu::Normalizer::normalize(input, UNORM_NFKC, 0, output, status);
  if (status != U_ZERO_ERROR && status != U_STRING_NOT_TERMINATED_WARNING)
    return false;

  // Copy the normalized text to the output.
  icu::StringCharacterIterator it(output);
  for (UChar c = it.first(); c != icu::CharacterIterator::DONE; c = it.next())
    attribute_->OutputChar(c, output_string);

  return !output_string->empty();
}