summaryrefslogtreecommitdiffstats
path: root/components/url_matcher/substring_set_matcher.cc
blob: 848c86300e8482da1afad5962fbedc5ced86129d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/url_matcher/substring_set_matcher.h"

#include <algorithm>
#include <queue>

#include "base/logging.h"
#include "base/stl_util.h"

namespace url_matcher {

namespace {

// Compare StringPattern instances based on their string patterns.
bool ComparePatterns(const StringPattern* a, const StringPattern* b) {
  return a->pattern() < b->pattern();
}

// Given the set of patterns, compute how many nodes will the corresponding
// Aho-Corasick tree have. Note that |patterns| need to be sorted.
uint32 TreeSize(const std::vector<const StringPattern*>& patterns) {
  uint32 result = 1u;  // 1 for the root node.
  if (patterns.empty())
    return result;

  std::vector<const StringPattern*>::const_iterator last = patterns.begin();
  std::vector<const StringPattern*>::const_iterator current = last + 1;
  // For the first pattern, each letter is a label of an edge to a new node.
  result += (*last)->pattern().size();

  // For the subsequent patterns, only count the edges which were not counted
  // yet. For this it suffices to test against the previous pattern, because the
  // patterns are sorted.
  for (; current != patterns.end(); ++last, ++current) {
    const std::string& last_pattern = (*last)->pattern();
    const std::string& current_pattern = (*current)->pattern();
    const uint32 prefix_bound =
        std::min(last_pattern.size(), current_pattern.size());

    uint32 common_prefix = 0;
    while (common_prefix < prefix_bound &&
           last_pattern[common_prefix] == current_pattern[common_prefix])
      ++common_prefix;
    result += current_pattern.size() - common_prefix;
  }
  return result;
}

}  // namespace

//
// SubstringSetMatcher
//

SubstringSetMatcher::SubstringSetMatcher() {
  RebuildAhoCorasickTree(SubstringPatternVector());
}

SubstringSetMatcher::~SubstringSetMatcher() {}

void SubstringSetMatcher::RegisterPatterns(
    const std::vector<const StringPattern*>& patterns) {
  RegisterAndUnregisterPatterns(patterns,
                                std::vector<const StringPattern*>());
}

void SubstringSetMatcher::UnregisterPatterns(
    const std::vector<const StringPattern*>& patterns) {
  RegisterAndUnregisterPatterns(std::vector<const StringPattern*>(),
                                patterns);
}

void SubstringSetMatcher::RegisterAndUnregisterPatterns(
      const std::vector<const StringPattern*>& to_register,
      const std::vector<const StringPattern*>& to_unregister) {
  // Register patterns.
  for (std::vector<const StringPattern*>::const_iterator i =
      to_register.begin(); i != to_register.end(); ++i) {
    DCHECK(patterns_.find((*i)->id()) == patterns_.end());
    patterns_[(*i)->id()] = *i;
  }

  // Unregister patterns
  for (std::vector<const StringPattern*>::const_iterator i =
      to_unregister.begin(); i != to_unregister.end(); ++i) {
    patterns_.erase((*i)->id());
  }

  // Now we compute the total number of tree nodes needed.
  SubstringPatternVector sorted_patterns;
  sorted_patterns.resize(patterns_.size());

  size_t next = 0;
  for (SubstringPatternMap::const_iterator i = patterns_.begin();
       i != patterns_.end();
       ++i, ++next) {
    sorted_patterns[next] = i->second;
  }

  std::sort(sorted_patterns.begin(), sorted_patterns.end(), ComparePatterns);
  tree_.reserve(TreeSize(sorted_patterns));

  RebuildAhoCorasickTree(sorted_patterns);
}

bool SubstringSetMatcher::Match(const std::string& text,
                                std::set<StringPattern::ID>* matches) const {
  const size_t old_number_of_matches = matches->size();

  // Handle patterns matching the empty string.
  matches->insert(tree_[0].matches().begin(), tree_[0].matches().end());

  uint32 current_node = 0;
  for (std::string::const_iterator i = text.begin(); i != text.end(); ++i) {
    uint32 edge_from_current = tree_[current_node].GetEdge(*i);
    while (edge_from_current == AhoCorasickNode::kNoSuchEdge &&
           current_node != 0) {
      current_node = tree_[current_node].failure();
      edge_from_current = tree_[current_node].GetEdge(*i);
    }
    if (edge_from_current != AhoCorasickNode::kNoSuchEdge) {
      current_node = edge_from_current;
      matches->insert(tree_[current_node].matches().begin(),
                      tree_[current_node].matches().end());
    } else {
      DCHECK_EQ(0u, current_node);
    }
  }

  return old_number_of_matches != matches->size();
}

bool SubstringSetMatcher::IsEmpty() const {
  // An empty tree consists of only the root node.
  return patterns_.empty() && tree_.size() == 1u;
}

void SubstringSetMatcher::RebuildAhoCorasickTree(
    const SubstringPatternVector& sorted_patterns) {
  tree_.clear();

  // Initialize root note of tree.
  AhoCorasickNode root;
  root.set_failure(0);
  tree_.push_back(root);

  // Insert all patterns.
  for (SubstringPatternVector::const_iterator i = sorted_patterns.begin();
       i != sorted_patterns.end();
       ++i) {
    InsertPatternIntoAhoCorasickTree(*i);
  }

  CreateFailureEdges();
}

void SubstringSetMatcher::InsertPatternIntoAhoCorasickTree(
    const StringPattern* pattern) {
  const std::string& text = pattern->pattern();
  const std::string::const_iterator text_end = text.end();

  // Iterators on the tree and the text.
  uint32 current_node = 0;
  std::string::const_iterator i = text.begin();

  // Follow existing paths for as long as possible.
  while (i != text_end) {
    uint32 edge_from_current = tree_[current_node].GetEdge(*i);
    if (edge_from_current == AhoCorasickNode::kNoSuchEdge)
      break;
    current_node = edge_from_current;
    ++i;
  }

  // Create new nodes if necessary.
  while (i != text_end) {
    tree_.push_back(AhoCorasickNode());
    tree_[current_node].SetEdge(*i, tree_.size() - 1);
    current_node = tree_.size() - 1;
    ++i;
  }

  // Register match.
  tree_[current_node].AddMatch(pattern->id());
}

void SubstringSetMatcher::CreateFailureEdges() {
  typedef AhoCorasickNode::Edges Edges;

  std::queue<uint32> queue;

  AhoCorasickNode& root = tree_[0];
  root.set_failure(0);
  const Edges& root_edges = root.edges();
  for (Edges::const_iterator e = root_edges.begin(); e != root_edges.end();
       ++e) {
    const uint32& leads_to = e->second;
    tree_[leads_to].set_failure(0);
    queue.push(leads_to);
  }

  while (!queue.empty()) {
    AhoCorasickNode& current_node = tree_[queue.front()];
    queue.pop();
    for (Edges::const_iterator e = current_node.edges().begin();
         e != current_node.edges().end(); ++e) {
      const char& edge_label = e->first;
      const uint32& leads_to = e->second;
      queue.push(leads_to);

      uint32 failure = current_node.failure();
      uint32 edge_from_failure = tree_[failure].GetEdge(edge_label);
      while (edge_from_failure == AhoCorasickNode::kNoSuchEdge &&
             failure != 0) {
        failure = tree_[failure].failure();
        edge_from_failure = tree_[failure].GetEdge(edge_label);
      }

      const uint32 follow_in_case_of_failure =
          edge_from_failure != AhoCorasickNode::kNoSuchEdge
              ? edge_from_failure
              : 0;
      tree_[leads_to].set_failure(follow_in_case_of_failure);
      tree_[leads_to].AddMatches(tree_[follow_in_case_of_failure].matches());
    }
  }
}

const uint32 SubstringSetMatcher::AhoCorasickNode::kNoSuchEdge = 0xFFFFFFFF;

SubstringSetMatcher::AhoCorasickNode::AhoCorasickNode()
    : failure_(kNoSuchEdge) {}

SubstringSetMatcher::AhoCorasickNode::~AhoCorasickNode() {}

SubstringSetMatcher::AhoCorasickNode::AhoCorasickNode(
    const SubstringSetMatcher::AhoCorasickNode& other)
    : edges_(other.edges_),
      failure_(other.failure_),
      matches_(other.matches_) {}

SubstringSetMatcher::AhoCorasickNode&
SubstringSetMatcher::AhoCorasickNode::operator=(
    const SubstringSetMatcher::AhoCorasickNode& other) {
  edges_ = other.edges_;
  failure_ = other.failure_;
  matches_ = other.matches_;
  return *this;
}

uint32 SubstringSetMatcher::AhoCorasickNode::GetEdge(char c) const {
  Edges::const_iterator i = edges_.find(c);
  return i == edges_.end() ? kNoSuchEdge : i->second;
}

void SubstringSetMatcher::AhoCorasickNode::SetEdge(char c, uint32 node) {
  edges_[c] = node;
}

void SubstringSetMatcher::AhoCorasickNode::AddMatch(StringPattern::ID id) {
  matches_.insert(id);
}

void SubstringSetMatcher::AhoCorasickNode::AddMatches(
    const SubstringSetMatcher::AhoCorasickNode::Matches& matches) {
  matches_.insert(matches.begin(), matches.end());
}

}  // namespace url_matcher