summaryrefslogtreecommitdiffstats
path: root/content/browser/speech/speech_recognizer_impl.cc
blob: 2081b2f982d4a3be7703f8c9e237fff72734d76a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "content/browser/speech/speech_recognizer_impl.h"

#include "base/basictypes.h"
#include "base/bind.h"
#include "base/time/time.h"
#include "content/browser/browser_main_loop.h"
#include "content/browser/speech/audio_buffer.h"
#include "content/browser/speech/google_one_shot_remote_engine.h"
#include "content/public/browser/speech_recognition_event_listener.h"
#include "media/base/audio_converter.h"
#include "net/url_request/url_request_context_getter.h"

#if defined(OS_WIN)
#include "media/audio/win/core_audio_util_win.h"
#endif

using media::AudioBus;
using media::AudioConverter;
using media::AudioInputController;
using media::AudioManager;
using media::AudioParameters;
using media::ChannelLayout;

namespace content {

// Private class which encapsulates the audio converter and the
// AudioConverter::InputCallback. It handles resampling, buffering and
// channel mixing between input and output parameters.
class SpeechRecognizerImpl::OnDataConverter
    : public media::AudioConverter::InputCallback {
 public:
  OnDataConverter(const AudioParameters& input_params,
                  const AudioParameters& output_params);
  virtual ~OnDataConverter();

  // Converts input |data| buffer into an AudioChunk where the input format
  // is given by |input_parameters_| and the output format by
  // |output_parameters_|.
  scoped_refptr<AudioChunk> Convert(const uint8* data, size_t size);

 private:
  // media::AudioConverter::InputCallback implementation.
  virtual double ProvideInput(AudioBus* dest,
                              base::TimeDelta buffer_delay) OVERRIDE;

  // Handles resampling, buffering, and channel mixing between input and output
  // parameters.
  AudioConverter audio_converter_;

  scoped_ptr<AudioBus> input_bus_;
  scoped_ptr<AudioBus> output_bus_;
  const AudioParameters input_parameters_;
  const AudioParameters output_parameters_;
  bool waiting_for_input_;
  scoped_ptr<uint8[]> converted_data_;

  DISALLOW_COPY_AND_ASSIGN(OnDataConverter);
};

namespace {

// The following constants are related to the volume level indicator shown in
// the UI for recorded audio.
// Multiplier used when new volume is greater than previous level.
const float kUpSmoothingFactor = 1.0f;
// Multiplier used when new volume is lesser than previous level.
const float kDownSmoothingFactor = 0.7f;
// RMS dB value of a maximum (unclipped) sine wave for int16 samples.
const float kAudioMeterMaxDb = 90.31f;
// This value corresponds to RMS dB for int16 with 6 most-significant-bits = 0.
// Values lower than this will display as empty level-meter.
const float kAudioMeterMinDb = 30.0f;
const float kAudioMeterDbRange = kAudioMeterMaxDb - kAudioMeterMinDb;

// Maximum level to draw to display unclipped meter. (1.0f displays clipping.)
const float kAudioMeterRangeMaxUnclipped = 47.0f / 48.0f;

// Returns true if more than 5% of the samples are at min or max value.
bool DetectClipping(const AudioChunk& chunk) {
  const int num_samples = chunk.NumSamples();
  const int16* samples = chunk.SamplesData16();
  const int kThreshold = num_samples / 20;
  int clipping_samples = 0;

  for (int i = 0; i < num_samples; ++i) {
    if (samples[i] <= -32767 || samples[i] >= 32767) {
      if (++clipping_samples > kThreshold)
        return true;
    }
  }
  return false;
}

void KeepAudioControllerRefcountedForDtor(scoped_refptr<AudioInputController>) {
}

}  // namespace

const int SpeechRecognizerImpl::kAudioSampleRate = 16000;
const ChannelLayout SpeechRecognizerImpl::kChannelLayout =
    media::CHANNEL_LAYOUT_MONO;
const int SpeechRecognizerImpl::kNumBitsPerAudioSample = 16;
const int SpeechRecognizerImpl::kNoSpeechTimeoutMs = 8000;
const int SpeechRecognizerImpl::kEndpointerEstimationTimeMs = 300;
media::AudioManager* SpeechRecognizerImpl::audio_manager_for_tests_ = NULL;

COMPILE_ASSERT(SpeechRecognizerImpl::kNumBitsPerAudioSample % 8 == 0,
               kNumBitsPerAudioSample_must_be_a_multiple_of_8);

// SpeechRecognizerImpl::OnDataConverter implementation

SpeechRecognizerImpl::OnDataConverter::OnDataConverter(
    const AudioParameters& input_params, const AudioParameters& output_params)
    : audio_converter_(input_params, output_params, false),
      input_bus_(AudioBus::Create(input_params)),
      output_bus_(AudioBus::Create(output_params)),
      input_parameters_(input_params),
      output_parameters_(output_params),
      waiting_for_input_(false),
      converted_data_(new uint8[output_parameters_.GetBytesPerBuffer()]) {
  audio_converter_.AddInput(this);
}

SpeechRecognizerImpl::OnDataConverter::~OnDataConverter() {
  // It should now be safe to unregister the converter since no more OnData()
  // callbacks are outstanding at this point.
  audio_converter_.RemoveInput(this);
}

scoped_refptr<AudioChunk> SpeechRecognizerImpl::OnDataConverter::Convert(
    const uint8* data, size_t size) {
  CHECK_EQ(size, static_cast<size_t>(input_parameters_.GetBytesPerBuffer()));

  input_bus_->FromInterleaved(
      data, input_bus_->frames(), input_parameters_.bits_per_sample() / 8);

  waiting_for_input_ = true;
  audio_converter_.Convert(output_bus_.get());

  output_bus_->ToInterleaved(
      output_bus_->frames(), output_parameters_.bits_per_sample() / 8,
      converted_data_.get());

  // TODO(primiano): Refactor AudioChunk to avoid the extra-copy here
  // (see http://crbug.com/249316 for details).
  return scoped_refptr<AudioChunk>(new AudioChunk(
      converted_data_.get(),
      output_parameters_.GetBytesPerBuffer(),
      output_parameters_.bits_per_sample() / 8));
}

double SpeechRecognizerImpl::OnDataConverter::ProvideInput(
    AudioBus* dest, base::TimeDelta buffer_delay) {
  // The audio converted should never ask for more than one bus in each call
  // to Convert(). If so, we have a serious issue in our design since we might
  // miss recorded chunks of 100 ms audio data.
  CHECK(waiting_for_input_);

  // Read from the input bus to feed the converter.
  input_bus_->CopyTo(dest);

  // |input_bus_| should only be provide once.
  waiting_for_input_ = false;
  return 1;
}

// SpeechRecognizerImpl implementation

SpeechRecognizerImpl::SpeechRecognizerImpl(
    SpeechRecognitionEventListener* listener,
    int session_id,
    bool is_single_shot,
    SpeechRecognitionEngine* engine)
    : SpeechRecognizer(listener, session_id),
      recognition_engine_(engine),
      endpointer_(kAudioSampleRate),
      is_dispatching_event_(false),
      is_single_shot_(is_single_shot),
      state_(STATE_IDLE) {
  DCHECK(recognition_engine_ != NULL);
  if (is_single_shot) {
    // In single shot recognition, the session is automatically ended after:
    //  - 0.5 seconds of silence if time <  3 seconds
    //  - 1   seconds of silence if time >= 3 seconds
    endpointer_.set_speech_input_complete_silence_length(
        base::Time::kMicrosecondsPerSecond / 2);
    endpointer_.set_long_speech_input_complete_silence_length(
        base::Time::kMicrosecondsPerSecond);
    endpointer_.set_long_speech_length(3 * base::Time::kMicrosecondsPerSecond);
  } else {
    // In continuous recognition, the session is automatically ended after 15
    // seconds of silence.
    const int64 cont_timeout_us = base::Time::kMicrosecondsPerSecond * 15;
    endpointer_.set_speech_input_complete_silence_length(cont_timeout_us);
    endpointer_.set_long_speech_length(0);  // Use only a single timeout.
  }
  endpointer_.StartSession();
  recognition_engine_->set_delegate(this);
}

// -------  Methods that trigger Finite State Machine (FSM) events ------------

// NOTE:all the external events and requests should be enqueued (PostTask), even
// if they come from the same (IO) thread, in order to preserve the relationship
// of causality between events and avoid interleaved event processing due to
// synchronous callbacks.

void SpeechRecognizerImpl::StartRecognition(const std::string& device_id) {
  DCHECK(!device_id.empty());
  device_id_ = device_id;

  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, FSMEventArgs(EVENT_START)));
}

void SpeechRecognizerImpl::AbortRecognition() {
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, FSMEventArgs(EVENT_ABORT)));
}

void SpeechRecognizerImpl::StopAudioCapture() {
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, FSMEventArgs(EVENT_STOP_CAPTURE)));
}

bool SpeechRecognizerImpl::IsActive() const {
  // Checking the FSM state from another thread (thus, while the FSM is
  // potentially concurrently evolving) is meaningless.
  DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
  return state_ != STATE_IDLE && state_ != STATE_ENDED;
}

bool SpeechRecognizerImpl::IsCapturingAudio() const {
  DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // See IsActive().
  const bool is_capturing_audio = state_ >= STATE_STARTING &&
                                  state_ <= STATE_RECOGNIZING;
  DCHECK((is_capturing_audio && (audio_controller_.get() != NULL)) ||
         (!is_capturing_audio && audio_controller_.get() == NULL));
  return is_capturing_audio;
}

const SpeechRecognitionEngine&
SpeechRecognizerImpl::recognition_engine() const {
  return *(recognition_engine_.get());
}

SpeechRecognizerImpl::~SpeechRecognizerImpl() {
  endpointer_.EndSession();
  if (audio_controller_.get()) {
    audio_controller_->Close(
        base::Bind(&KeepAudioControllerRefcountedForDtor, audio_controller_));
  }
}

// Invoked in the audio thread.
void SpeechRecognizerImpl::OnError(AudioInputController* controller) {
  FSMEventArgs event_args(EVENT_AUDIO_ERROR);
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

void SpeechRecognizerImpl::OnData(AudioInputController* controller,
                                  const uint8* data, uint32 size) {
  if (size == 0)  // This could happen when audio capture stops and is normal.
    return;

  // Convert audio from native format to fixed format used by WebSpeech.
  FSMEventArgs event_args(EVENT_AUDIO_DATA);
  event_args.audio_data = audio_converter_->Convert(data, size);

  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

void SpeechRecognizerImpl::OnAudioClosed(AudioInputController*) {}

void SpeechRecognizerImpl::OnSpeechRecognitionEngineResults(
    const SpeechRecognitionResults& results) {
  FSMEventArgs event_args(EVENT_ENGINE_RESULT);
  event_args.engine_results = results;
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

void SpeechRecognizerImpl::OnSpeechRecognitionEngineError(
    const SpeechRecognitionError& error) {
  FSMEventArgs event_args(EVENT_ENGINE_ERROR);
  event_args.engine_error = error;
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

// -----------------------  Core FSM implementation ---------------------------
// TODO(primiano): After the changes in the media package (r129173), this class
// slightly violates the SpeechRecognitionEventListener interface contract. In
// particular, it is not true anymore that this class can be freed after the
// OnRecognitionEnd event, since the audio_controller_.Close() asynchronous
// call can be still in progress after the end event. Currently, it does not
// represent a problem for the browser itself, since refcounting protects us
// against such race conditions. However, we should fix this in the next CLs.
// For instance, tests are currently working just because the
// TestAudioInputController is not closing asynchronously as the real controller
// does, but they will become flaky if TestAudioInputController will be fixed.

void SpeechRecognizerImpl::DispatchEvent(const FSMEventArgs& event_args) {
  DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
  DCHECK_LE(event_args.event, EVENT_MAX_VALUE);
  DCHECK_LE(state_, STATE_MAX_VALUE);

  // Event dispatching must be sequential, otherwise it will break all the rules
  // and the assumptions of the finite state automata model.
  DCHECK(!is_dispatching_event_);
  is_dispatching_event_ = true;

  // Guard against the delegate freeing us until we finish processing the event.
  scoped_refptr<SpeechRecognizerImpl> me(this);

  if (event_args.event == EVENT_AUDIO_DATA) {
    DCHECK(event_args.audio_data.get() != NULL);
    ProcessAudioPipeline(*event_args.audio_data.get());
  }

  // The audio pipeline must be processed before the event dispatch, otherwise
  // it would take actions according to the future state instead of the current.
  state_ = ExecuteTransitionAndGetNextState(event_args);
  is_dispatching_event_ = false;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::ExecuteTransitionAndGetNextState(
    const FSMEventArgs& event_args) {
  const FSMEvent event = event_args.event;
  switch (state_) {
    case STATE_IDLE:
      switch (event) {
        // TODO(primiano): restore UNREACHABLE_CONDITION on EVENT_ABORT and
        // EVENT_STOP_CAPTURE below once speech input extensions are fixed.
        case EVENT_ABORT:
          return AbortSilently(event_args);
        case EVENT_START:
          return StartRecording(event_args);
        case EVENT_STOP_CAPTURE:
          return AbortSilently(event_args);
        case EVENT_AUDIO_DATA:     // Corner cases related to queued messages
        case EVENT_ENGINE_RESULT:  // being lately dispatched.
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return DoNothing(event_args);
      }
      break;
    case STATE_STARTING:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return AbortSilently(event_args);
        case EVENT_AUDIO_DATA:
          return StartRecognitionEngine(event_args);
        case EVENT_ENGINE_RESULT:
          return NotFeasible(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_ESTIMATING_ENVIRONMENT:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return StopCaptureAndWaitForResult(event_args);
        case EVENT_AUDIO_DATA:
          return WaitEnvironmentEstimationCompletion(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessIntermediateResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_WAITING_FOR_SPEECH:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return StopCaptureAndWaitForResult(event_args);
        case EVENT_AUDIO_DATA:
          return DetectUserSpeechOrTimeout(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessIntermediateResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_RECOGNIZING:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return StopCaptureAndWaitForResult(event_args);
        case EVENT_AUDIO_DATA:
          return DetectEndOfSpeech(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessIntermediateResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_WAITING_FINAL_RESULT:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
        case EVENT_AUDIO_DATA:
          return DoNothing(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessFinalResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;

    // TODO(primiano): remove this state when speech input extensions support
    // will be removed and STATE_IDLE.EVENT_ABORT,EVENT_STOP_CAPTURE will be
    // reset to NotFeasible (see TODO above).
    case STATE_ENDED:
      return DoNothing(event_args);
  }
  return NotFeasible(event_args);
}

// ----------- Contract for all the FSM evolution functions below -------------
//  - Are guaranteed to be executed in the IO thread;
//  - Are guaranteed to be not reentrant (themselves and each other);
//  - event_args members are guaranteed to be stable during the call;
//  - The class won't be freed in the meanwhile due to callbacks;
//  - IsCapturingAudio() returns true if and only if audio_controller_ != NULL.

// TODO(primiano): the audio pipeline is currently serial. However, the
// clipper->endpointer->vumeter chain and the sr_engine could be parallelized.
// We should profile the execution to see if it would be worth or not.
void SpeechRecognizerImpl::ProcessAudioPipeline(const AudioChunk& raw_audio) {
  const bool route_to_endpointer = state_ >= STATE_ESTIMATING_ENVIRONMENT &&
                                   state_ <= STATE_RECOGNIZING;
  const bool route_to_sr_engine = route_to_endpointer;
  const bool route_to_vumeter = state_ >= STATE_WAITING_FOR_SPEECH &&
                                state_ <= STATE_RECOGNIZING;
  const bool clip_detected = DetectClipping(raw_audio);
  float rms = 0.0f;

  num_samples_recorded_ += raw_audio.NumSamples();

  if (route_to_endpointer)
    endpointer_.ProcessAudio(raw_audio, &rms);

  if (route_to_vumeter) {
    DCHECK(route_to_endpointer); // Depends on endpointer due to |rms|.
    UpdateSignalAndNoiseLevels(rms, clip_detected);
  }
  if (route_to_sr_engine) {
    DCHECK(recognition_engine_.get() != NULL);
    recognition_engine_->TakeAudioChunk(raw_audio);
  }
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::StartRecording(const FSMEventArgs&) {
  DCHECK(recognition_engine_.get() != NULL);
  DCHECK(!IsCapturingAudio());
  const bool unit_test_is_active = (audio_manager_for_tests_ != NULL);
  AudioManager* audio_manager = unit_test_is_active ?
                                audio_manager_for_tests_ :
                                AudioManager::Get();
  DCHECK(audio_manager != NULL);

  DVLOG(1) << "SpeechRecognizerImpl starting audio capture.";
  num_samples_recorded_ = 0;
  audio_level_ = 0;
  listener()->OnRecognitionStart(session_id());

  // TODO(xians): Check if the OS has the device with |device_id_|, return
  // |SPEECH_AUDIO_ERROR_DETAILS_NO_MIC| if the target device does not exist.
  if (!audio_manager->HasAudioInputDevices()) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO,
                                        SPEECH_AUDIO_ERROR_DETAILS_NO_MIC));
  }

  int chunk_duration_ms = recognition_engine_->GetDesiredAudioChunkDurationMs();

  AudioParameters in_params = audio_manager->GetInputStreamParameters(
      device_id_);
  if (!in_params.IsValid() && !unit_test_is_active) {
    DLOG(ERROR) << "Invalid native audio input parameters";
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO));
  }

  // Audio converter shall provide audio based on these parameters as output.
  // Hard coded, WebSpeech specific parameters are utilized here.
  int frames_per_buffer = (kAudioSampleRate * chunk_duration_ms) / 1000;
  AudioParameters output_parameters = AudioParameters(
      AudioParameters::AUDIO_PCM_LOW_LATENCY, kChannelLayout, kAudioSampleRate,
      kNumBitsPerAudioSample, frames_per_buffer);

  // Audio converter will receive audio based on these parameters as input.
  // On Windows we start by verifying that Core Audio is supported. If not,
  // the WaveIn API is used and we might as well avoid all audio conversations
  // since WaveIn does the conversion for us.
  // TODO(henrika): this code should be moved to platform dependent audio
  // managers.
  bool use_native_audio_params = true;
#if defined(OS_WIN)
  use_native_audio_params = media::CoreAudioUtil::IsSupported();
  DVLOG_IF(1, !use_native_audio_params) << "Reverting to WaveIn for WebSpeech";
#endif

  AudioParameters input_parameters = output_parameters;
  if (use_native_audio_params && !unit_test_is_active) {
    // Use native audio parameters but avoid opening up at the native buffer
    // size. Instead use same frame size (in milliseconds) as WebSpeech uses.
    // We rely on internal buffers in the audio back-end to fulfill this request
    // and the idea is to simplify the audio conversion since each Convert()
    // call will then render exactly one ProvideInput() call.
    // Due to implementation details in the audio converter, 2 milliseconds
    // are added to the default frame size (100 ms) to ensure there is enough
    // data to generate 100 ms of output when resampling.
    frames_per_buffer =
        ((in_params.sample_rate() * (chunk_duration_ms + 2)) / 1000.0) + 0.5;
    input_parameters.Reset(in_params.format(),
                           in_params.channel_layout(),
                           in_params.channels(),
                           in_params.input_channels(),
                           in_params.sample_rate(),
                           in_params.bits_per_sample(),
                           frames_per_buffer);
  }

  // Create an audio converter which converts data between native input format
  // and WebSpeech specific output format.
  audio_converter_.reset(
      new OnDataConverter(input_parameters, output_parameters));

  audio_controller_ = AudioInputController::Create(
      audio_manager, this, input_parameters, device_id_);

  if (!audio_controller_.get()) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO));
  }

  // The endpointer needs to estimate the environment/background noise before
  // starting to treat the audio as user input. We wait in the state
  // ESTIMATING_ENVIRONMENT until such interval has elapsed before switching
  // to user input mode.
  endpointer_.SetEnvironmentEstimationMode();
  audio_controller_->Record();
  return STATE_STARTING;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::StartRecognitionEngine(const FSMEventArgs& event_args) {
  // This is the first audio packet captured, so the recognition engine is
  // started and the delegate notified about the event.
  DCHECK(recognition_engine_.get() != NULL);
  recognition_engine_->StartRecognition();
  listener()->OnAudioStart(session_id());

  // This is a little hack, since TakeAudioChunk() is already called by
  // ProcessAudioPipeline(). It is the best tradeoff, unless we allow dropping
  // the first audio chunk captured after opening the audio device.
  recognition_engine_->TakeAudioChunk(*(event_args.audio_data.get()));
  return STATE_ESTIMATING_ENVIRONMENT;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::WaitEnvironmentEstimationCompletion(const FSMEventArgs&) {
  DCHECK(endpointer_.IsEstimatingEnvironment());
  if (GetElapsedTimeMs() >= kEndpointerEstimationTimeMs) {
    endpointer_.SetUserInputMode();
    listener()->OnEnvironmentEstimationComplete(session_id());
    return STATE_WAITING_FOR_SPEECH;
  } else {
    return STATE_ESTIMATING_ENVIRONMENT;
  }
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::DetectUserSpeechOrTimeout(const FSMEventArgs&) {
  if (endpointer_.DidStartReceivingSpeech()) {
    listener()->OnSoundStart(session_id());
    return STATE_RECOGNIZING;
  } else if (GetElapsedTimeMs() >= kNoSpeechTimeoutMs) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_NO_SPEECH));
  }
  return STATE_WAITING_FOR_SPEECH;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::DetectEndOfSpeech(const FSMEventArgs& event_args) {
  if (endpointer_.speech_input_complete())
    return StopCaptureAndWaitForResult(event_args);
  return STATE_RECOGNIZING;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::StopCaptureAndWaitForResult(const FSMEventArgs&) {
  DCHECK(state_ >= STATE_ESTIMATING_ENVIRONMENT && state_ <= STATE_RECOGNIZING);

  DVLOG(1) << "Concluding recognition";
  CloseAudioControllerAsynchronously();
  recognition_engine_->AudioChunksEnded();

  if (state_ > STATE_WAITING_FOR_SPEECH)
    listener()->OnSoundEnd(session_id());

  listener()->OnAudioEnd(session_id());
  return STATE_WAITING_FINAL_RESULT;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::AbortSilently(const FSMEventArgs& event_args) {
  DCHECK_NE(event_args.event, EVENT_AUDIO_ERROR);
  DCHECK_NE(event_args.event, EVENT_ENGINE_ERROR);
  return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_NONE));
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::AbortWithError(const FSMEventArgs& event_args) {
  if (event_args.event == EVENT_AUDIO_ERROR) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO));
  } else if (event_args.event == EVENT_ENGINE_ERROR) {
    return Abort(event_args.engine_error);
  }
  return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_ABORTED));
}

SpeechRecognizerImpl::FSMState SpeechRecognizerImpl::Abort(
    const SpeechRecognitionError& error) {
  if (IsCapturingAudio())
    CloseAudioControllerAsynchronously();

  DVLOG(1) << "SpeechRecognizerImpl canceling recognition. ";

  // The recognition engine is initialized only after STATE_STARTING.
  if (state_ > STATE_STARTING) {
    DCHECK(recognition_engine_.get() != NULL);
    recognition_engine_->EndRecognition();
  }

  if (state_ > STATE_WAITING_FOR_SPEECH && state_ < STATE_WAITING_FINAL_RESULT)
    listener()->OnSoundEnd(session_id());

  if (state_ > STATE_STARTING && state_ < STATE_WAITING_FINAL_RESULT)
    listener()->OnAudioEnd(session_id());

  if (error.code != SPEECH_RECOGNITION_ERROR_NONE)
    listener()->OnRecognitionError(session_id(), error);

  listener()->OnRecognitionEnd(session_id());

  return STATE_ENDED;
}

SpeechRecognizerImpl::FSMState SpeechRecognizerImpl::ProcessIntermediateResult(
    const FSMEventArgs& event_args) {
  // Provisional results can occur only during continuous (non one-shot) mode.
  // If this check is reached it means that a continuous speech recognition
  // engine is being used for a one shot recognition.
  DCHECK_EQ(false, is_single_shot_);

  // In continuous recognition, intermediate results can occur even when we are
  // in the ESTIMATING_ENVIRONMENT or WAITING_FOR_SPEECH states (if the
  // recognition engine is "faster" than our endpointer). In these cases we
  // skip the endpointer and fast-forward to the RECOGNIZING state, with respect
  // of the events triggering order.
  if (state_ == STATE_ESTIMATING_ENVIRONMENT) {
    DCHECK(endpointer_.IsEstimatingEnvironment());
    endpointer_.SetUserInputMode();
    listener()->OnEnvironmentEstimationComplete(session_id());
  } else if (state_ == STATE_WAITING_FOR_SPEECH) {
    listener()->OnSoundStart(session_id());
  } else {
    DCHECK_EQ(STATE_RECOGNIZING, state_);
  }

  listener()->OnRecognitionResults(session_id(), event_args.engine_results);
  return STATE_RECOGNIZING;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::ProcessFinalResult(const FSMEventArgs& event_args) {
  const SpeechRecognitionResults& results = event_args.engine_results;
  SpeechRecognitionResults::const_iterator i = results.begin();
  bool provisional_results_pending = false;
  bool results_are_empty = true;
  for (; i != results.end(); ++i) {
    const SpeechRecognitionResult& result = *i;
    if (result.is_provisional) {
      provisional_results_pending = true;
      DCHECK(!is_single_shot_);
    } else if (results_are_empty) {
      results_are_empty = result.hypotheses.empty();
    }
  }

  if (provisional_results_pending) {
    listener()->OnRecognitionResults(session_id(), results);
    // We don't end the recognition if a provisional result is received in
    // STATE_WAITING_FINAL_RESULT. A definitive result will come next and will
    // end the recognition.
    return state_;
  }

  recognition_engine_->EndRecognition();

  if (!results_are_empty) {
    // We could receive an empty result (which we won't propagate further)
    // in the following (continuous) scenario:
    //  1. The caller start pushing audio and receives some results;
    //  2. A |StopAudioCapture| is issued later;
    //  3. The final audio frames captured in the interval ]1,2] do not lead to
    //     any result (nor any error);
    //  4. The speech recognition engine, therefore, emits an empty result to
    //     notify that the recognition is ended with no error, yet neither any
    //     further result.
    listener()->OnRecognitionResults(session_id(), results);
  }

  listener()->OnRecognitionEnd(session_id());
  return STATE_ENDED;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::DoNothing(const FSMEventArgs&) const {
  return state_;  // Just keep the current state.
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::NotFeasible(const FSMEventArgs& event_args) {
  NOTREACHED() << "Unfeasible event " << event_args.event
               << " in state " << state_;
  return state_;
}

void SpeechRecognizerImpl::CloseAudioControllerAsynchronously() {
  DCHECK(IsCapturingAudio());
  DVLOG(1) << "SpeechRecognizerImpl closing audio controller.";
  // Issues a Close on the audio controller, passing an empty callback. The only
  // purpose of such callback is to keep the audio controller refcounted until
  // Close has completed (in the audio thread) and automatically destroy it
  // afterwards (upon return from OnAudioClosed).
  audio_controller_->Close(base::Bind(&SpeechRecognizerImpl::OnAudioClosed,
                                      this, audio_controller_));
  audio_controller_ = NULL;  // The controller is still refcounted by Bind.
}

int SpeechRecognizerImpl::GetElapsedTimeMs() const {
  return (num_samples_recorded_ * 1000) / kAudioSampleRate;
}

void SpeechRecognizerImpl::UpdateSignalAndNoiseLevels(const float& rms,
                                                  bool clip_detected) {
  // Calculate the input volume to display in the UI, smoothing towards the
  // new level.
  // TODO(primiano): Do we really need all this floating point arith here?
  // Perhaps it might be quite expensive on mobile.
  float level = (rms - kAudioMeterMinDb) /
      (kAudioMeterDbRange / kAudioMeterRangeMaxUnclipped);
  level = std::min(std::max(0.0f, level), kAudioMeterRangeMaxUnclipped);
  const float smoothing_factor = (level > audio_level_) ? kUpSmoothingFactor :
                                                          kDownSmoothingFactor;
  audio_level_ += (level - audio_level_) * smoothing_factor;

  float noise_level = (endpointer_.NoiseLevelDb() - kAudioMeterMinDb) /
      (kAudioMeterDbRange / kAudioMeterRangeMaxUnclipped);
  noise_level = std::min(std::max(0.0f, noise_level),
                         kAudioMeterRangeMaxUnclipped);

  listener()->OnAudioLevelsChange(
      session_id(), clip_detected ? 1.0f : audio_level_, noise_level);
}

void SpeechRecognizerImpl::SetAudioManagerForTests(
    AudioManager* audio_manager) {
  audio_manager_for_tests_ = audio_manager;
}

SpeechRecognizerImpl::FSMEventArgs::FSMEventArgs(FSMEvent event_value)
    : event(event_value),
      audio_data(NULL),
      engine_error(SPEECH_RECOGNITION_ERROR_NONE) {
}

SpeechRecognizerImpl::FSMEventArgs::~FSMEventArgs() {
}

}  // namespace content