1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/common/gpu/client/gl_helper_scaling.h"
#include <deque>
#include <string>
#include <vector>
#include "base/bind.h"
#include "base/debug/trace_event.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_loop.h"
#include "base/time/time.h"
#include "third_party/WebKit/public/platform/WebCString.h"
#include "third_party/skia/include/core/SkRegion.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/size.h"
#include "ui/gl/gl_bindings.h"
using WebKit::WebGLId;
using WebKit::WebGraphicsContext3D;
namespace content {
GLHelperScaling::GLHelperScaling(WebKit::WebGraphicsContext3D* context,
GLHelper* helper)
: context_(context),
helper_(helper),
vertex_attributes_buffer_(context_, context_->createBuffer()) {
InitBuffer();
}
GLHelperScaling::~GLHelperScaling() {
}
// Used to keep track of a generated shader program. The program
// is passed in as text through Setup and is used by calling
// UseProgram() with the right parameters. Note that |context_|
// and |helper_| are assumed to live longer than this program.
class ShaderProgram : public base::RefCounted<ShaderProgram> {
public:
ShaderProgram(WebGraphicsContext3D* context,
GLHelper* helper)
: context_(context),
helper_(helper),
program_(context, context->createProgram()) {
}
// Compile shader program, return true if successful.
bool Setup(const WebKit::WGC3Dchar* vertex_shader_text,
const WebKit::WGC3Dchar* fragment_shader_text);
// UseProgram must be called with GL_TEXTURE_2D bound to the
// source texture and GL_ARRAY_BUFFER bound to a vertex
// attribute buffer.
void UseProgram(const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool scale_x,
bool flip_y,
GLfloat color_weights[4]);
private:
friend class base::RefCounted<ShaderProgram>;
~ShaderProgram() {}
WebGraphicsContext3D* context_;
GLHelper* helper_;
// A program for copying a source texture into a destination texture.
ScopedProgram program_;
// The location of the position in the program.
WebKit::WGC3Dint position_location_;
// The location of the texture coordinate in the program.
WebKit::WGC3Dint texcoord_location_;
// The location of the source texture in the program.
WebKit::WGC3Dint texture_location_;
// The location of the texture coordinate of
// the sub-rectangle in the program.
WebKit::WGC3Dint src_subrect_location_;
// Location of size of source image in pixels.
WebKit::WGC3Dint src_pixelsize_location_;
// Location of size of destination image in pixels.
WebKit::WGC3Dint dst_pixelsize_location_;
// Location of vector for scaling direction.
WebKit::WGC3Dint scaling_vector_location_;
// Location of color weights.
WebKit::WGC3Dint color_weights_location_;
DISALLOW_COPY_AND_ASSIGN(ShaderProgram);
};
// Implementation of a single stage in a scaler pipeline. If the pipeline has
// multiple stages, it calls Scale() on the subscaler, then further scales the
// output. Caches textures and framebuffers to avoid allocating/deleting
// them once per frame, which can be expensive on some drivers.
class ScalerImpl :
public GLHelper::ScalerInterface,
public GLHelperScaling::ShaderInterface {
public:
// |context| and |copy_impl| are expected to live longer than this object.
// |src_size| is the size of the input texture in pixels.
// |dst_size| is the size of the output texutre in pixels.
// |src_subrect| is the portion of the src to copy to the output texture.
// If |scale_x| is true, we are scaling along the X axis, otherwise Y.
// If we are scaling in both X and Y, |scale_x| is ignored.
// If |vertically_flip_texture| is true, output will be upside-down.
// If |swizzle| is true, RGBA will be transformed into BGRA.
// |color_weights| are only used together with SHADER_PLANAR to specify
// how to convert RGB colors into a single value.
ScalerImpl(WebGraphicsContext3D* context,
GLHelperScaling* scaler_helper,
const GLHelperScaling::ScalerStage &scaler_stage,
ScalerImpl* subscaler,
const float* color_weights) :
context_(context),
scaler_helper_(scaler_helper),
spec_(scaler_stage),
intermediate_texture_(0),
dst_framebuffer_(context, context_->createFramebuffer()),
subscaler_(subscaler) {
if (color_weights) {
color_weights_[0] = color_weights[0];
color_weights_[1] = color_weights[1];
color_weights_[2] = color_weights[2];
color_weights_[3] = color_weights[3];
} else {
color_weights_[0] = 0.0;
color_weights_[1] = 0.0;
color_weights_[2] = 0.0;
color_weights_[3] = 0.0;
}
shader_program_ = scaler_helper_->GetShaderProgram(spec_.shader,
spec_.swizzle);
if (subscaler_) {
intermediate_texture_ = context_->createTexture();
ScopedTextureBinder<GL_TEXTURE_2D> texture_binder(
context_,
intermediate_texture_);
context_->texImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
spec_.src_size.width(),
spec_.src_size.height(),
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
NULL);
}
}
virtual ~ScalerImpl() {
if (intermediate_texture_) {
context_->deleteTexture(intermediate_texture_);
}
}
// GLHelperShader::ShaderInterface implementation.
virtual void Execute(
WebKit::WebGLId source_texture,
const std::vector<WebKit::WebGLId>& dest_textures) OVERRIDE {
if (subscaler_) {
subscaler_->Scale(source_texture, intermediate_texture_);
source_texture = intermediate_texture_;
}
ScopedFramebufferBinder<GL_FRAMEBUFFER> framebuffer_binder(
context_,
dst_framebuffer_);
DCHECK_GT(dest_textures.size(), 0U);
scoped_ptr<WebKit::WGC3Denum[]> buffers(
new WebKit::WGC3Denum[dest_textures.size()]);
for (size_t t = 0; t < dest_textures.size(); t++) {
ScopedTextureBinder<GL_TEXTURE_2D> texture_binder(context_,
dest_textures[t]);
context_->framebufferTexture2D(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0 + t,
GL_TEXTURE_2D,
dest_textures[t],
0);
buffers[t] = GL_COLOR_ATTACHMENT0 + t;
}
ScopedTextureBinder<GL_TEXTURE_2D> texture_binder(context_,
source_texture);
context_->texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
context_->texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);
context_->texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);
context_->texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);
ScopedBufferBinder<GL_ARRAY_BUFFER> buffer_binder(
context_,
scaler_helper_->vertex_attributes_buffer_);
shader_program_->UseProgram(spec_.src_size,
spec_.src_subrect,
spec_.dst_size,
spec_.scale_x,
spec_.vertically_flip_texture,
color_weights_);
context_->viewport(0, 0, spec_.dst_size.width(), spec_.dst_size.height());
if (dest_textures.size() > 1) {
DCHECK_LE(static_cast<int>(dest_textures.size()),
scaler_helper_->helper_->MaxDrawBuffers());
context_->drawBuffersEXT(dest_textures.size(), buffers.get());
}
// Conduct texture mapping by drawing a quad composed of two triangles.
context_->drawArrays(GL_TRIANGLE_STRIP, 0, 4);
if (dest_textures.size() > 1) {
// Set the draw buffers back to not confuse others.
context_->drawBuffersEXT(1, &buffers[0]);
}
}
// GLHelper::ScalerInterface implementation.
virtual void Scale(WebKit::WebGLId source_texture,
WebKit::WebGLId dest_texture) OVERRIDE {
std::vector<WebKit::WebGLId> tmp(1);
tmp[0] = dest_texture;
Execute(source_texture, tmp);
}
virtual const gfx::Size& SrcSize() OVERRIDE {
if (subscaler_) {
return subscaler_->SrcSize();
}
return spec_.src_size;
}
virtual const gfx::Rect& SrcSubrect() OVERRIDE {
if (subscaler_) {
return subscaler_->SrcSubrect();
}
return spec_.src_subrect;
}
virtual const gfx::Size& DstSize() OVERRIDE {
return spec_.dst_size;
}
private:
WebGraphicsContext3D* context_;
GLHelperScaling* scaler_helper_;
GLHelperScaling::ScalerStage spec_;
GLfloat color_weights_[4];
WebKit::WebGLId intermediate_texture_;
scoped_refptr<ShaderProgram> shader_program_;
ScopedFramebuffer dst_framebuffer_;
scoped_ptr<ScalerImpl> subscaler_;
};
GLHelperScaling::ScalerStage::ScalerStage(
ShaderType shader_,
gfx::Size src_size_,
gfx::Rect src_subrect_,
gfx::Size dst_size_,
bool scale_x_,
bool vertically_flip_texture_,
bool swizzle_)
: shader(shader_),
src_size(src_size_),
src_subrect(src_subrect_),
dst_size(dst_size_),
scale_x(scale_x_),
vertically_flip_texture(vertically_flip_texture_),
swizzle(swizzle_) {
}
// The important inputs for this function is |x_ops| and
// |y_ops|. They represent scaling operations to be done
// on an imag of size |src_size|. If |quality| is SCALER_QUALITY_BEST,
// then we will interpret these scale operations literally and we'll
// create one scaler stage for each ScaleOp. However, if |quality|
// is SCALER_QUALITY_GOOD, then we can do a whole bunch of optimizations
// by combining two or more ScaleOps in to a single scaler stage.
// Normally we process ScaleOps from |y_ops| first and |x_ops| after
// all |y_ops| are processed, but sometimes we can combine one or more
// operation from both queues essentially for free. This is the reason
// why |x_ops| and |y_ops| aren't just one single queue.
void GLHelperScaling::ConvertScalerOpsToScalerStages(
GLHelper::ScalerQuality quality,
gfx::Size src_size,
gfx::Rect src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle,
std::deque<GLHelperScaling::ScaleOp>* x_ops,
std::deque<GLHelperScaling::ScaleOp>* y_ops,
std::vector<ScalerStage> *scaler_stages) {
while (!x_ops->empty() || !y_ops->empty()) {
gfx::Size intermediate_size = src_subrect.size();
std::deque<ScaleOp>* current_queue = NULL;
if (!y_ops->empty()) {
current_queue = y_ops;
} else {
current_queue = x_ops;
}
ShaderType current_shader = SHADER_BILINEAR;
switch (current_queue->front().scale_factor) {
case 0:
if (quality == GLHelper::SCALER_QUALITY_BEST) {
current_shader = SHADER_BICUBIC_UPSCALE;
}
break;
case 2:
if (quality == GLHelper::SCALER_QUALITY_BEST) {
current_shader = SHADER_BICUBIC_HALF_1D;
}
break;
case 3:
DCHECK(quality != GLHelper::SCALER_QUALITY_BEST);
current_shader = SHADER_BILINEAR3;
break;
default:
NOTREACHED();
}
bool scale_x = current_queue->front().scale_x;
current_queue->front().UpdateSize(&intermediate_size);
current_queue->pop_front();
// Optimization: Sometimes we can combine 2-4 scaling operations into
// one operation.
if (quality == GLHelper::SCALER_QUALITY_GOOD) {
if (!current_queue->empty() && current_shader == SHADER_BILINEAR) {
// Combine two steps in the same dimension.
current_queue->front().UpdateSize(&intermediate_size);
current_queue->pop_front();
current_shader = SHADER_BILINEAR2;
if (!current_queue->empty()) {
// Combine three steps in the same dimension.
current_queue->front().UpdateSize(&intermediate_size);
current_queue->pop_front();
current_shader = SHADER_BILINEAR4;
}
}
// Check if we can combine some steps in the other dimension as well.
// Since all shaders currently use GL_LINEAR, we can easily scale up
// or scale down by exactly 2x at the same time as we do another
// operation. Currently, the following mergers are supported:
// * 1 bilinear Y-pass with 1 bilinear X-pass (up or down)
// * 2 bilinear Y-passes with 2 bilinear X-passes
// * 1 bilinear Y-pass with N bilinear X-pass
// * N bilinear Y-passes with 1 bilinear X-pass (down only)
// Measurements indicate that generalizing this for 3x3 and 4x4
// makes it slower on some platforms, such as the Pixel.
if (!scale_x && x_ops->size() > 0 &&
x_ops->front().scale_factor <= 2) {
int x_passes = 0;
if (current_shader == SHADER_BILINEAR2 && x_ops->size() >= 2) {
// 2y + 2x passes
x_passes = 2;
current_shader = SHADER_BILINEAR2X2;
} else if (current_shader == SHADER_BILINEAR) {
// 1y + Nx passes
scale_x = true;
switch (x_ops->size()) {
case 0:
NOTREACHED();
case 1:
if (x_ops->front().scale_factor == 3) {
current_shader = SHADER_BILINEAR3;
}
x_passes = 1;
break;
case 2:
x_passes = 2;
current_shader = SHADER_BILINEAR2;
break;
default:
x_passes = 3;
current_shader = SHADER_BILINEAR4;
break;
}
} else if (x_ops->front().scale_factor == 2) {
// Ny + 1x-downscale
x_passes = 1;
}
for (int i = 0; i < x_passes; i++) {
x_ops->front().UpdateSize(&intermediate_size);
x_ops->pop_front();
}
}
}
scaler_stages->push_back(ScalerStage(current_shader,
src_size,
src_subrect,
intermediate_size,
scale_x,
vertically_flip_texture,
swizzle));
src_size = intermediate_size;
src_subrect = gfx::Rect(intermediate_size);
vertically_flip_texture = false;
swizzle = false;
}
}
void GLHelperScaling::ComputeScalerStages(
GLHelper::ScalerQuality quality,
const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle,
std::vector<ScalerStage> *scaler_stages) {
if (quality == GLHelper::SCALER_QUALITY_FAST ||
src_subrect.size() == dst_size) {
scaler_stages->push_back(ScalerStage(SHADER_BILINEAR,
src_size,
src_subrect,
dst_size,
false,
vertically_flip_texture,
swizzle));
return;
}
std::deque<GLHelperScaling::ScaleOp> x_ops, y_ops;
GLHelperScaling::ScaleOp::AddOps(src_subrect.width(),
dst_size.width(),
true,
quality == GLHelper::SCALER_QUALITY_GOOD,
&x_ops);
GLHelperScaling::ScaleOp::AddOps(src_subrect.height(),
dst_size.height(),
false,
quality == GLHelper::SCALER_QUALITY_GOOD,
&y_ops);
ConvertScalerOpsToScalerStages(
quality,
src_size,
src_subrect,
dst_size,
vertically_flip_texture,
swizzle,
&x_ops,
&y_ops,
scaler_stages);
}
GLHelper::ScalerInterface*
GLHelperScaling::CreateScaler(GLHelper::ScalerQuality quality,
gfx::Size src_size,
gfx::Rect src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
bool swizzle) {
std::vector<ScalerStage> scaler_stages;
ComputeScalerStages(quality,
src_size,
src_subrect,
dst_size,
vertically_flip_texture,
swizzle,
&scaler_stages);
ScalerImpl* ret = NULL;
for (unsigned int i = 0; i < scaler_stages.size(); i++) {
ret = new ScalerImpl(context_, this, scaler_stages[i], ret, NULL);
}
return ret;
}
GLHelper::ScalerInterface*
GLHelperScaling::CreatePlanarScaler(
const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
const float color_weights[4]) {
ScalerStage stage(SHADER_PLANAR,
src_size,
src_subrect,
dst_size,
true,
vertically_flip_texture,
false);
return new ScalerImpl(context_, this, stage, NULL, color_weights);
}
GLHelperScaling::ShaderInterface*
GLHelperScaling::CreateYuvMrtShader(
const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool vertically_flip_texture,
ShaderType shader) {
DCHECK(shader == SHADER_YUV_MRT_PASS1 || shader == SHADER_YUV_MRT_PASS2);
ScalerStage stage(shader,
src_size,
src_subrect,
dst_size,
true,
vertically_flip_texture,
false);
return new ScalerImpl(context_, this, stage, NULL, NULL);
}
const WebKit::WGC3Dfloat GLHelperScaling::kVertexAttributes[] = {
-1.0f, -1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 1.0f, 1.0f,
};
void GLHelperScaling::InitBuffer() {
ScopedBufferBinder<GL_ARRAY_BUFFER> buffer_binder(
context_, vertex_attributes_buffer_);
context_->bufferData(GL_ARRAY_BUFFER,
sizeof(kVertexAttributes),
kVertexAttributes,
GL_STATIC_DRAW);
}
scoped_refptr<ShaderProgram>
GLHelperScaling::GetShaderProgram(ShaderType type,
bool swizzle) {
ShaderProgramKeyType key(type, swizzle);
scoped_refptr<ShaderProgram>& cache_entry(shader_programs_[key]);
if (!cache_entry.get()) {
cache_entry = new ShaderProgram(context_, helper_);
std::basic_string<WebKit::WGC3Dchar> vertex_program;
std::basic_string<WebKit::WGC3Dchar> fragment_program;
std::basic_string<WebKit::WGC3Dchar> vertex_header;
std::basic_string<WebKit::WGC3Dchar> fragment_directives;
std::basic_string<WebKit::WGC3Dchar> fragment_header;
std::basic_string<WebKit::WGC3Dchar> shared_variables;
vertex_header.append(
"precision highp float;\n"
"attribute vec2 a_position;\n"
"attribute vec2 a_texcoord;\n"
"uniform vec4 src_subrect;\n");
fragment_header.append(
"precision mediump float;\n"
"uniform sampler2D s_texture;\n");
vertex_program.append(
" gl_Position = vec4(a_position, 0.0, 1.0);\n"
" vec2 texcoord = src_subrect.xy + a_texcoord * src_subrect.zw;\n");
switch (type) {
case SHADER_BILINEAR:
shared_variables.append("varying vec2 v_texcoord;\n");
vertex_program.append(" v_texcoord = texcoord;\n");
fragment_program.append(
" gl_FragColor = texture2D(s_texture, v_texcoord);\n");
break;
case SHADER_BILINEAR2:
// This is equivialent to two passes of the BILINEAR shader above.
// It can be used to scale an image down 1.0x-2.0x in either dimension,
// or exactly 4x.
shared_variables.append(
"varying vec4 v_texcoords;\n"); // 2 texcoords packed in one quad
vertex_header.append(
"uniform vec2 scaling_vector;\n"
"uniform vec2 dst_pixelsize;\n");
vertex_program.append(
" vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
" step /= 4.0;\n"
" v_texcoords.xy = texcoord + step;\n"
" v_texcoords.zw = texcoord - step;\n");
fragment_program.append(
" gl_FragColor = (texture2D(s_texture, v_texcoords.xy) +\n"
" texture2D(s_texture, v_texcoords.zw)) / 2.0;\n");
break;
case SHADER_BILINEAR3:
// This is kind of like doing 1.5 passes of the BILINEAR shader.
// It can be used to scale an image down 1.5x-3.0x, or exactly 6x.
shared_variables.append(
"varying vec4 v_texcoords1;\n" // 2 texcoords packed in one quad
"varying vec2 v_texcoords2;\n");
vertex_header.append(
"uniform vec2 scaling_vector;\n"
"uniform vec2 dst_pixelsize;\n");
vertex_program.append(
" vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
" step /= 3.0;\n"
" v_texcoords1.xy = texcoord + step;\n"
" v_texcoords1.zw = texcoord;\n"
" v_texcoords2 = texcoord - step;\n");
fragment_program.append(
" gl_FragColor = (texture2D(s_texture, v_texcoords1.xy) +\n"
" texture2D(s_texture, v_texcoords1.zw) +\n"
" texture2D(s_texture, v_texcoords2)) / 3.0;\n");
break;
case SHADER_BILINEAR4:
// This is equivialent to three passes of the BILINEAR shader above,
// It can be used to scale an image down 2.0x-4.0x or exactly 8x.
shared_variables.append(
"varying vec4 v_texcoords[2];\n");
vertex_header.append(
"uniform vec2 scaling_vector;\n"
"uniform vec2 dst_pixelsize;\n");
vertex_program.append(
" vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
" step /= 8.0;\n"
" v_texcoords[0].xy = texcoord - step * 3.0;\n"
" v_texcoords[0].zw = texcoord - step;\n"
" v_texcoords[1].xy = texcoord + step;\n"
" v_texcoords[1].zw = texcoord + step * 3.0;\n");
fragment_program.append(
" gl_FragColor = (\n"
" texture2D(s_texture, v_texcoords[0].xy) +\n"
" texture2D(s_texture, v_texcoords[0].zw) +\n"
" texture2D(s_texture, v_texcoords[1].xy) +\n"
" texture2D(s_texture, v_texcoords[1].zw)) / 4.0;\n");
break;
case SHADER_BILINEAR2X2:
// This is equivialent to four passes of the BILINEAR shader above.
// Two in each dimension. It can be used to scale an image down
// 1.0x-2.0x in both X and Y directions. Or, it could be used to
// scale an image down by exactly 4x in both dimensions.
shared_variables.append(
"varying vec4 v_texcoords[2];\n");
vertex_header.append(
"uniform vec2 dst_pixelsize;\n");
vertex_program.append(
" vec2 step = src_subrect.zw / 4.0 / dst_pixelsize;\n"
" v_texcoords[0].xy = texcoord + vec2(step.x, step.y);\n"
" v_texcoords[0].zw = texcoord + vec2(step.x, -step.y);\n"
" v_texcoords[1].xy = texcoord + vec2(-step.x, step.y);\n"
" v_texcoords[1].zw = texcoord + vec2(-step.x, -step.y);\n");
fragment_program.append(
" gl_FragColor = (\n"
" texture2D(s_texture, v_texcoords[0].xy) +\n"
" texture2D(s_texture, v_texcoords[0].zw) +\n"
" texture2D(s_texture, v_texcoords[1].xy) +\n"
" texture2D(s_texture, v_texcoords[1].zw)) / 4.0;\n");
break;
case SHADER_BICUBIC_HALF_1D:
// This scales down texture by exactly half in one dimension.
// directions in one pass. We use bilinear lookup to reduce
// the number of texture reads from 8 to 4
shared_variables.append(
"const float CenterDist = 99.0 / 140.0;\n"
"const float LobeDist = 11.0 / 4.0;\n"
"const float CenterWeight = 35.0 / 64.0;\n"
"const float LobeWeight = -3.0 / 64.0;\n"
"varying vec4 v_texcoords[2];\n");
vertex_header.append(
"uniform vec2 scaling_vector;\n"
"uniform vec2 src_pixelsize;\n");
vertex_program.append(
" vec2 step = src_subrect.zw * scaling_vector / src_pixelsize;\n"
" v_texcoords[0].xy = texcoord - LobeDist * step;\n"
" v_texcoords[0].zw = texcoord - CenterDist * step;\n"
" v_texcoords[1].xy = texcoord + CenterDist * step;\n"
" v_texcoords[1].zw = texcoord + LobeDist * step;\n");
fragment_program.append(
" gl_FragColor = \n"
// Lobe pixels
" (texture2D(s_texture, v_texcoords[0].xy) +\n"
" texture2D(s_texture, v_texcoords[1].zw)) *\n"
" LobeWeight +\n"
// Center pixels
" (texture2D(s_texture, v_texcoords[0].zw) +\n"
" texture2D(s_texture, v_texcoords[1].xy)) *\n"
" CenterWeight;\n");
break;
case SHADER_BICUBIC_UPSCALE:
// When scaling up, we need 4 texture reads, but we can
// save some instructions because will know in which range of
// the bicubic function each call call to the bicubic function
// will be in.
// Also, when sampling the bicubic function like this, the sum
// is always exactly one, so we can skip normalization as well.
shared_variables.append(
"varying vec2 v_texcoord;\n");
vertex_program.append(
" v_texcoord = texcoord;\n");
fragment_header.append(
"uniform vec2 src_pixelsize;\n"
"uniform vec2 scaling_vector;\n"
"const float a = -0.5;\n"
// This function is equivialent to calling the bicubic
// function with x-1, x, 1-x and 2-x
// (assuming 0 <= x < 1)
"vec4 filt4(float x) {\n"
" return vec4(x * x * x, x * x, x, 1) *\n"
" mat4( a, -2.0 * a, a, 0.0,\n"
" a + 2.0, -a - 3.0, 0.0, 1.0,\n"
" -a - 2.0, 3.0 + 2.0 * a, -a, 0.0,\n"
" -a, a, 0.0, 0.0);\n"
"}\n"
"mat4 pixels_x(vec2 pos, vec2 step) {\n"
" return mat4(\n"
" texture2D(s_texture, pos - step),\n"
" texture2D(s_texture, pos),\n"
" texture2D(s_texture, pos + step),\n"
" texture2D(s_texture, pos + step * 2.0));\n"
"}\n");
fragment_program.append(
" vec2 pixel_pos = v_texcoord * src_pixelsize - \n"
" scaling_vector / 2.0;\n"
" float frac = fract(dot(pixel_pos, scaling_vector));\n"
" vec2 base = (floor(pixel_pos) + vec2(0.5)) / src_pixelsize;\n"
" vec2 step = scaling_vector / src_pixelsize;\n"
" gl_FragColor = pixels_x(base, step) * filt4(frac);\n");
break;
case SHADER_PLANAR:
// Converts four RGBA pixels into one pixel. Each RGBA
// pixel will be dot-multiplied with the color weights and
// then placed into a component of the output. This is used to
// convert RGBA textures into Y, U and V textures. We do this
// because single-component textures are not renderable on all
// architectures.
shared_variables.append(
"varying vec4 v_texcoords[2];\n");
vertex_header.append(
"uniform vec2 scaling_vector;\n"
"uniform vec2 dst_pixelsize;\n");
vertex_program.append(
" vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
" step /= 4.0;\n"
" v_texcoords[0].xy = texcoord - step * 1.5;\n"
" v_texcoords[0].zw = texcoord - step * 0.5;\n"
" v_texcoords[1].xy = texcoord + step * 0.5;\n"
" v_texcoords[1].zw = texcoord + step * 1.5;\n");
fragment_header.append(
"uniform vec4 color_weights;\n");
fragment_program.append(
" gl_FragColor = color_weights * mat4(\n"
" vec4(texture2D(s_texture, v_texcoords[0].xy).rgb, 1.0),\n"
" vec4(texture2D(s_texture, v_texcoords[0].zw).rgb, 1.0),\n"
" vec4(texture2D(s_texture, v_texcoords[1].xy).rgb, 1.0),\n"
" vec4(texture2D(s_texture, v_texcoords[1].zw).rgb, 1.0));\n");
// Swizzle makes no sense for this shader.
DCHECK(!swizzle);
break;
case SHADER_YUV_MRT_PASS1:
// RGB24 to YV12 in two passes; writing two 8888 targets each pass.
//
// YV12 is full-resolution luma and half-resolution blue/red chroma.
//
// (original)
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
// |
// | (y plane) (temporary)
// | YYYY YYYY UUVV UUVV
// +--> { YYYY YYYY + UUVV UUVV }
// YYYY YYYY UUVV UUVV
// First YYYY YYYY UUVV UUVV
// pass YYYY YYYY UUVV UUVV
// YYYY YYYY UUVV UUVV
// |
// | (u plane) (v plane)
// Second | UUUU VVVV
// pass +--> { UUUU + VVVV }
// UUUU VVVV
//
shared_variables.append(
"varying vec4 v_texcoords[2];\n");
vertex_header.append(
"uniform vec2 scaling_vector;\n"
"uniform vec2 dst_pixelsize;\n");
vertex_program.append(
" vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
" step /= 4.0;\n"
" v_texcoords[0].xy = texcoord - step * 1.5;\n"
" v_texcoords[0].zw = texcoord - step * 0.5;\n"
" v_texcoords[1].xy = texcoord + step * 0.5;\n"
" v_texcoords[1].zw = texcoord + step * 1.5;\n");
fragment_directives.append(
"#extension GL_EXT_draw_buffers : enable\n");
fragment_header.append(
"const vec3 kRGBtoY = vec3(0.257, 0.504, 0.098);\n"
"const float kYBias = 0.0625;\n"
// Divide U and V by two to compensate for averaging below.
"const vec3 kRGBtoU = vec3(-0.148, -0.291, 0.439) / 2.0;\n"
"const vec3 kRGBtoV = vec3(0.439, -0.368, -0.071) / 2.0;\n"
"const float kUVBias = 0.5;\n");
fragment_program.append(
" vec3 pixel1 = texture2D(s_texture, v_texcoords[0].xy).rgb;\n"
" vec3 pixel2 = texture2D(s_texture, v_texcoords[0].zw).rgb;\n"
" vec3 pixel3 = texture2D(s_texture, v_texcoords[1].xy).rgb;\n"
" vec3 pixel4 = texture2D(s_texture, v_texcoords[1].zw).rgb;\n"
" vec3 pixel12 = pixel1 + pixel2;\n"
" vec3 pixel34 = pixel3 + pixel4;\n"
" gl_FragData[0] = vec4(dot(pixel1, kRGBtoY),\n"
" dot(pixel2, kRGBtoY),\n"
" dot(pixel3, kRGBtoY),\n"
" dot(pixel4, kRGBtoY)) + kYBias;\n"
" gl_FragData[1] = vec4(dot(pixel12, kRGBtoU),\n"
" dot(pixel34, kRGBtoU),\n"
" dot(pixel12, kRGBtoV),\n"
" dot(pixel34, kRGBtoV)) + kUVBias;\n");
// Swizzle makes no sense for this shader.
DCHECK(!swizzle);
break;
case SHADER_YUV_MRT_PASS2:
// We're just sampling two pixels and unswizzling them. There's
// no need to do vertical scaling with math, since bilinear
// interpolation in the sampler takes care of that.
shared_variables.append(
"varying vec4 v_texcoords;\n");
vertex_header.append(
"uniform vec2 scaling_vector;\n"
"uniform vec2 dst_pixelsize;\n");
vertex_program.append(
" vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
" step /= 2.0;\n"
" v_texcoords.xy = texcoord - step * 0.5;\n"
" v_texcoords.zw = texcoord + step * 0.5;\n");
fragment_directives.append(
"#extension GL_EXT_draw_buffers : enable\n");
fragment_program.append(
" vec4 lo_uuvv = texture2D(s_texture, v_texcoords.xy);\n"
" vec4 hi_uuvv = texture2D(s_texture, v_texcoords.zw);\n"
" gl_FragData[0] = vec4(lo_uuvv.rg, hi_uuvv.rg);\n"
" gl_FragData[1] = vec4(lo_uuvv.ba, hi_uuvv.ba);\n");
// Swizzle makes no sense for this shader.
DCHECK(!swizzle);
break;
}
if (swizzle) {
fragment_program.append(" gl_FragColor = gl_FragColor.bgra;\n");
}
vertex_program =
vertex_header +
shared_variables +
"void main() {\n" +
vertex_program +
"}\n";
fragment_program =
fragment_directives +
fragment_header +
shared_variables +
"void main() {\n" +
fragment_program +
"}\n";
bool result = cache_entry->Setup(vertex_program.c_str(),
fragment_program.c_str());
DCHECK(result || context_->isContextLost())
<< "vertex_program =\n" << vertex_program
<< "fragment_program =\n" << fragment_program;
}
return cache_entry;
}
bool ShaderProgram::Setup(const WebKit::WGC3Dchar* vertex_shader_text,
const WebKit::WGC3Dchar* fragment_shader_text) {
// Shaders to map the source texture to |dst_texture_|.
ScopedShader vertex_shader(context_, helper_->CompileShaderFromSource(
vertex_shader_text, GL_VERTEX_SHADER));
if (vertex_shader.id() == 0) {
return false;
}
context_->attachShader(program_, vertex_shader);
ScopedShader fragment_shader(context_, helper_->CompileShaderFromSource(
fragment_shader_text, GL_FRAGMENT_SHADER));
if (fragment_shader.id() == 0) {
return false;
}
context_->attachShader(program_, fragment_shader);
context_->linkProgram(program_);
WebKit::WGC3Dint link_status = 0;
context_->getProgramiv(program_, GL_LINK_STATUS, &link_status);
if (!link_status) {
LOG(ERROR) << std::string(context_->getProgramInfoLog(program_).utf8());
return false;
}
position_location_ = context_->getAttribLocation(program_, "a_position");
texcoord_location_ = context_->getAttribLocation(program_, "a_texcoord");
texture_location_ = context_->getUniformLocation(program_, "s_texture");
src_subrect_location_ = context_->getUniformLocation(program_, "src_subrect");
src_pixelsize_location_ = context_->getUniformLocation(program_,
"src_pixelsize");
dst_pixelsize_location_ = context_->getUniformLocation(program_,
"dst_pixelsize");
scaling_vector_location_ = context_->getUniformLocation(program_,
"scaling_vector");
color_weights_location_ = context_->getUniformLocation(program_,
"color_weights");
return true;
}
void ShaderProgram::UseProgram(
const gfx::Size& src_size,
const gfx::Rect& src_subrect,
const gfx::Size& dst_size,
bool scale_x,
bool flip_y,
GLfloat color_weights[4]) {
context_->useProgram(program_);
WebKit::WGC3Dintptr offset = 0;
context_->vertexAttribPointer(position_location_,
2,
GL_FLOAT,
GL_FALSE,
4 * sizeof(WebKit::WGC3Dfloat),
offset);
context_->enableVertexAttribArray(position_location_);
offset += 2 * sizeof(WebKit::WGC3Dfloat);
context_->vertexAttribPointer(texcoord_location_,
2,
GL_FLOAT,
GL_FALSE,
4 * sizeof(WebKit::WGC3Dfloat),
offset);
context_->enableVertexAttribArray(texcoord_location_);
context_->uniform1i(texture_location_, 0);
// Convert |src_subrect| to texture coordinates.
GLfloat src_subrect_texcoord[] = {
static_cast<float>(src_subrect.x()) / src_size.width(),
static_cast<float>(src_subrect.y()) / src_size.height(),
static_cast<float>(src_subrect.width()) / src_size.width(),
static_cast<float>(src_subrect.height()) / src_size.height(),
};
if (flip_y) {
src_subrect_texcoord[1] += src_subrect_texcoord[3];
src_subrect_texcoord[3] *= -1.0;
}
context_->uniform4fv(src_subrect_location_, 1, src_subrect_texcoord);
context_->uniform2f(src_pixelsize_location_,
src_size.width(),
src_size.height());
context_->uniform2f(dst_pixelsize_location_,
static_cast<float>(dst_size.width()),
static_cast<float>(dst_size.height()));
context_->uniform2f(scaling_vector_location_,
scale_x ? 1.0 : 0.0,
scale_x ? 0.0 : 1.0);
context_->uniform4fv(color_weights_location_, 1, color_weights);
}
} // namespace content
|