1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/adjustment_method.h"
#include <algorithm>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/string_util.h"
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"
#include "courgette/image_info.h"
namespace courgette {
// We have three discretionary information logging levels for algorithm
// development. For now just configure with #defines.
// TODO(sra): make dependent of some configurable setting.
#define NO_LOG DLOG_IF(INFO, false)
// #define ALOG1 LOG(INFO)
// #define ALOG2 LOG(INFO)
// #define ALOG3 LOG(INFO)
#define ALOG1 NO_LOG
#define ALOG2 NO_LOG
#define ALOG3 NO_LOG
////////////////////////////////////////////////////////////////////////////////
class NullAdjustmentMethod : public AdjustmentMethod {
bool Adjust(const AssemblyProgram& model, AssemblyProgram* program) {
return true;
}
};
////////////////////////////////////////////////////////////////////////////////
// The purpose of adjustment is to assign indexes to Labels of a program 'p' to
// make the sequence of indexes similar to a 'model' program 'm'. Labels
// themselves don't have enough information to do this job, so we work with a
// LabelInfo surrogate for each label.
//
class LabelInfo {
public:
Label* label_; // The label that this info a surrogate for.
// Information used only in debugging messages.
uint32 is_model_ : 1; // Is the label in the model?
uint32 debug_index_ : 31; // An unique small number for naming the label.
uint32 refs_; // Number of times this Label is referenced.
LabelInfo* assignment_; // Label from other program corresponding to this.
// LabelInfos are in a doubly linked list ordered by address (label_->rva_) so
// we can quickly find Labels adjacent in address order.
LabelInfo* next_addr_; // Label(Info) at next highest address.
LabelInfo* prev_addr_; // Label(Info) at next lowest address.
std::vector<uint32> positions_; // Offsets into the trace of references.
// Just a no-argument constructor and copy constructor. Actual LabelInfo
// objects are allocated in std::pair structs in a std::map.
LabelInfo()
: label_(NULL), is_model_(false), debug_index_(0), refs_(0),
assignment_(NULL),
next_addr_(NULL),
prev_addr_(NULL) {}
private:
void operator=(const LabelInfo*); // Disallow assignment only.
// Public compiler generated copy constructor is needed to constuct
// std::pair<Label*, LabelInfo> so that fresh LabelInfos can be allocated
// inside a std::map.
};
struct OrderLabelInfoByAddressAscending {
bool operator()(const LabelInfo* a, const LabelInfo* b) const {
return a->label_->rva_ < b->label_->rva_;
}
};
static std::string ToString(LabelInfo* info) {
std::string s;
StringAppendF(&s, "%c%d", "pm"[info->is_model_], info->debug_index_);
if (info->label_->index_ != Label::kNoIndex)
StringAppendF(&s, " (%d)", info->label_->index_);
StringAppendF(&s, " #%u", info->refs_);
return s;
}
// General graph matching is exponential, essentially trying all permutations.
// The exponential algorithm can be made faster by avoiding consideration of
// impossible or unlikely matches. We can make the matching practical by eager
// matching - by looking for likely matches and commiting to them, and using the
// committed assignment as the basis for further matching.
//
// The basic eager graph-matching assignment is based on several ideas:
//
// * The strongest match will be for parts of the program that have not
// changed. If part of a program has not changed, then the number of
// references to a label will be the same, and corresponding pairs of
// adjacent labels will have the same RVA difference.
//
// * Some assignments are 'obvious' if you look at the distribution. Example:
// if both the program and the model have a label that is referred to much
// more often than the next most refered-to label, it is likely the two
// labels correspond.
//
// * If a label from the program corresponds to a label in the model, it is
// likely that the labels near the corresponding labels also match. A
// conservative way of extending the match is to assign only those labels
// which have exactly the same address offset and reference count.
//
// * If two labels correspond, then we can try to match up the references
// before and after the labels in the reference stream. For this to be
// practical, the number of references has to be small, e.g. each label has
// exactly one reference.
//
// Note: we also tried a completely different approach: random assignment
// followed by simulated annealing. This produced similar results. The results
// were not as good for very small differences because the simulated annealing
// never quite hit the groove. And simulated annealing was several orders of
// magnitude slower.
// TRIE node for suffix strings in the label reference sequence.
//
// We dynamically build a trie for both the program and model, growing the trie
// as necessary. The trie node for a (possibly) empty string of label
// references contains the distribution of labels following the string. The
// roots node (for the empty string) thus contains the simple distribution of
// labels within the label reference stream.
struct Node {
Node(LabelInfo* in_edge, Node* prev)
: in_edge_(in_edge), prev_(prev), count_(0),
in_queue_(false) {
length_ = 1 + (prev_ ? prev_->length_ : 0);
}
LabelInfo* in_edge_; //
Node* prev_; // Node at shorter length.
int count_; // Frequency of this path in Trie.
int length_;
typedef std::map<LabelInfo*, Node*> Edges;
Edges edges_;
std::vector<int> places_; // Indexes into sequence of this item.
std::list<Node*> edges_in_frequency_order;
bool in_queue_;
bool Extended() const { return edges_.size() > 0; }
uint32 Weight() const {
return edges_in_frequency_order.front()->count_;
}
};
static std::string ToString(Node* node) {
std::vector<std::string> prefix;
for (Node* n = node; n->prev_; n = n->prev_)
prefix.push_back(ToString(n->in_edge_));
std::string s;
s += "{";
const char* sep = "";
while (!prefix.empty()) {
s += sep;
sep = ",";
s += prefix.back();
prefix.pop_back();
}
s += StringPrintf("%u", node->count_);
s += " @";
s += Uint64ToString(node->edges_in_frequency_order.size());
s += "}";
return s;
}
typedef std::vector<LabelInfo*> Trace;
struct OrderNodeByCountDecreasing {
bool operator()(Node* a, Node* b) const {
if (a->count_ != b->count_)
return (a->count_) > (b->count_);
return a->places_.at(0) < b->places_.at(0); // Prefer first occuring.
}
};
struct OrderNodeByWeightDecreasing {
bool operator()(Node* a, Node* b) const {
// (Maybe tie-break on total count, followed by lowest assigned node indexes
// in path.)
uint32 a_weight = a->Weight();
uint32 b_weight = b->Weight();
if (a_weight != b_weight)
return a_weight > b_weight;
if (a->length_ != b->length_)
return a->length_ > b->length_; // Prefer longer.
return a->places_.at(0) < b->places_.at(0); // Prefer first occuring.
}
};
typedef std::set<Node*, OrderNodeByWeightDecreasing> NodeQueue;
class AssignmentProblem {
public:
AssignmentProblem(const Trace& model,
const Trace& problem)
: m_trace_(model),
p_trace_(problem) {
}
~AssignmentProblem() {
for (size_t i = 0; i < all_nodes_.size(); ++i)
delete all_nodes_[i];
}
bool Solve() {
m_root_ = MakeRootNode(m_trace_);
p_root_ = MakeRootNode(p_trace_);
AddToQueue(p_root_);
while (!worklist_.empty()) {
Node* node = *worklist_.begin();
node->in_queue_ = false;
worklist_.erase(node);
TrySolveNode(node);
}
ALOG1 << unsolved_.size() << " unsolved items";
return true;
}
private:
void AddToQueue(Node* node) {
if (node->length_ >= 10) {
ALOG3 << "Length clipped " << ToString(node->prev_);
return;
}
if (node->in_queue_) {
LOG(ERROR) << "Double add " << ToString(node);
return;
}
// just to be sure data for prioritizing is available
ExtendNode(node, p_trace_);
// SkipCommittedLabels(node);
if (node->edges_in_frequency_order.empty())
return;
node->in_queue_ = true;
worklist_.insert(node);
}
void SkipCommittedLabels(Node* node) {
ExtendNode(node, p_trace_);
uint32 skipped = 0;
while (!node->edges_in_frequency_order.empty() &&
node->edges_in_frequency_order.front()->in_edge_->assignment_) {
++skipped;
node->edges_in_frequency_order.pop_front();
}
if (skipped > 0)
ALOG3 << "Skipped " << skipped << " at " << ToString(node);
}
void TrySolveNode(Node* p_node) {
Node* front = p_node->edges_in_frequency_order.front();
if (front->in_edge_->assignment_) {
p_node->edges_in_frequency_order.pop_front();
AddToQueue(front);
AddToQueue(p_node);
return;
}
// Compare frequencies of unassigned edges, and either make
// assignment(s) or move node to unsolved list
Node* m_node = FindModelNode(p_node);
if (m_node == NULL) {
ALOG1 << "Can't find model node";
unsolved_.insert(p_node);
return;
}
ExtendNode(m_node, m_trace_);
// Lets just try greedy
SkipCommittedLabels(m_node);
if (m_node->edges_in_frequency_order.empty()) {
ALOG3 << "Punting, no elements left in model vs "
<< p_node->edges_in_frequency_order.size();
unsolved_.insert(p_node);
return;
}
Node* m_match = m_node->edges_in_frequency_order.front();
Node* p_match = p_node->edges_in_frequency_order.front();
if (p_match->count_ > 1.1 * m_match->count_ ||
m_match->count_ > 1.1 * p_match->count_) {
ALOG2 << "Tricky distribution "
<< p_match->count_ << ":" << m_match->count_ << " "
<< ToString(p_match) << " vs " << ToString(m_match);
return;
}
m_node->edges_in_frequency_order.pop_front();
p_node->edges_in_frequency_order.pop_front();
LabelInfo* p_label_info = p_match->in_edge_;
LabelInfo* m_label_info = m_match->in_edge_;
int m_index = p_label_info->label_->index_;
if (m_index != Label::kNoIndex) {
ALOG1 << "Cant use unassigned label from model " << m_index;
unsolved_.insert(p_node);
return;
}
Assign(p_label_info, m_label_info);
AddToQueue(p_match); // find matches within new match
AddToQueue(p_node); // and more matches within this node
}
void Assign(LabelInfo* p_info, LabelInfo* m_info) {
AssignOne(p_info, m_info);
ALOG3 << "Assign " << ToString(p_info) << " := " << ToString(m_info);
// Now consider unassigned adjacent addresses
TryExtendAssignment(p_info, m_info);
}
void AssignOne(LabelInfo* p_info, LabelInfo* m_info) {
p_info->label_->index_ = m_info->label_->index_;
// Mark as assigned
m_info->assignment_ = p_info;
p_info->assignment_ = m_info;
}
void TryExtendAssignment(LabelInfo* p_info, LabelInfo* m_info) {
RVA m_rva_base = m_info->label_->rva_;
RVA p_rva_base = p_info->label_->rva_;
LabelInfo* m_info_next = m_info->next_addr_;
LabelInfo* p_info_next = p_info->next_addr_;
for ( ; m_info_next && p_info_next; ) {
if (m_info_next->assignment_)
break;
RVA m_rva = m_info_next->label_->rva_;
RVA p_rva = p_info_next->label_->rva_;
if (m_rva - m_rva_base != p_rva - p_rva_base) {
// previous label was pointing to something that is different size
break;
}
LabelInfo* m_info_next_next = m_info_next->next_addr_;
LabelInfo* p_info_next_next = p_info_next->next_addr_;
if (m_info_next_next && p_info_next_next) {
RVA m_rva_next = m_info_next_next->label_->rva_;
RVA p_rva_next = p_info_next_next->label_->rva_;
if (m_rva_next - m_rva != p_rva_next - p_rva) {
// Since following labels are no longer in address lockstep, assume
// this address has a difference.
break;
}
}
// The label has inconsistent numbers of references, it is probably not
// the same thing.
if (m_info_next->refs_ != p_info_next->refs_) {
break;
}
ALOG3 << " Extending assignment -> "
<< ToString(p_info_next) << " := " << ToString(m_info_next);
AssignOne(p_info_next, m_info_next);
if (p_info_next->refs_ == m_info_next->refs_ &&
p_info_next->refs_ == 1) {
TryExtendSequence(p_info_next->positions_[0],
m_info_next->positions_[0]);
TryExtendSequenceBackwards(p_info_next->positions_[0],
m_info_next->positions_[0]);
}
p_info_next = p_info_next_next;
m_info_next = m_info_next_next;
}
LabelInfo* m_info_prev = m_info->prev_addr_;
LabelInfo* p_info_prev = p_info->prev_addr_;
for ( ; m_info_prev && p_info_prev; ) {
if (m_info_prev->assignment_)
break;
RVA m_rva = m_info_prev->label_->rva_;
RVA p_rva = p_info_prev->label_->rva_;
if (m_rva - m_rva_base != p_rva - p_rva_base) {
// previous label was pointing to something that is different size
break;
}
LabelInfo* m_info_prev_prev = m_info_prev->prev_addr_;
LabelInfo* p_info_prev_prev = p_info_prev->prev_addr_;
// The the label has inconsistent numbers of references, it is
// probably not the same thing
if (m_info_prev->refs_ != p_info_prev->refs_) {
break;
}
AssignOne(p_info_prev, m_info_prev);
ALOG3 << " Extending assignment <- " << ToString(p_info_prev) << " := "
<< ToString(m_info_prev);
p_info_prev = p_info_prev_prev;
m_info_prev = m_info_prev_prev;
}
}
uint32 TryExtendSequence(uint32 p_pos_start, uint32 m_pos_start) {
uint32 p_pos = p_pos_start + 1;
uint32 m_pos = m_pos_start + 1;
while (p_pos < p_trace_.size() && m_pos < m_trace_.size()) {
LabelInfo* p_info = p_trace_[p_pos];
LabelInfo* m_info = m_trace_[m_pos];
// To match, either (1) both are assigned or (2) both are unassigned.
if ((p_info->assignment_ == NULL) != (m_info->assignment_ == NULL))
break;
// If they are assigned, it needs to be consistent (same index).
if (p_info->assignment_ && m_info->assignment_) {
if (p_info->label_->index_ != m_info->label_->index_)
break;
++p_pos;
++m_pos;
continue;
}
if (p_info->refs_ != m_info->refs_)
break;
AssignOne(p_info, m_info);
ALOG3 << " Extending assignment seq"
<< "[+" << p_pos - p_pos_start << "]"
<< " -> "
<< ToString(p_info) << " := " << ToString(m_info);
++p_pos;
++m_pos;
}
return p_pos - p_pos_start;
}
uint32 TryExtendSequenceBackwards(uint32 p_pos_start, uint32 m_pos_start) {
if (p_pos_start == 0 || m_pos_start == 0)
return 0;
uint32 p_pos = p_pos_start - 1;
uint32 m_pos = m_pos_start - 1;
while (p_pos > 0 && m_pos > 0) {
LabelInfo* p_info = p_trace_[p_pos];
LabelInfo* m_info = m_trace_[m_pos];
if ((p_info->assignment_ == NULL) != (m_info->assignment_ == NULL))
break;
if (p_info->assignment_ && m_info->assignment_) {
if (p_info->label_->index_ != m_info->label_->index_)
break;
--p_pos;
--m_pos;
continue;
}
if (p_info->refs_ != m_info->refs_)
break;
AssignOne(p_info, m_info);
ALOG3 << " Extending assignment seq"
<< "[-" << p_pos_start - p_pos << "]"
<< " <- "
<< ToString(p_info) << " := " << ToString(m_info);
--p_pos;
--m_pos;
}
return p_pos - p_pos_start;
}
Node* FindModelNode(Node* node) {
if (node->prev_ == NULL)
return m_root_;
Node* m_parent = FindModelNode(node->prev_);
if (m_parent == NULL) {
return NULL;
}
ExtendNode(m_parent, m_trace_);
LabelInfo* p_label = node->in_edge_;
LabelInfo* m_label = p_label->assignment_;
if (m_label == NULL) {
ALOG1 << "Expected assigned prefix";
return NULL;
}
Node::Edges::iterator e = m_parent->edges_.find(m_label);
if (e == m_parent->edges_.end()) {
ALOG2 << "Expected defined edge in parent";
return NULL;
}
return e->second;
}
Node* MakeRootNode(const Trace& trace) {
Node* node = new Node(NULL, NULL);
all_nodes_.push_back(node);
for (size_t i = 0; i < trace.size(); ++i) {
++node->count_;
node->places_.push_back(i);
}
return node;
}
void ExtendNode(Node* node, const Trace& trace) {
// Make sure trie is filled in at this node.
if (node->Extended())
return;
for (size_t i = 0; i < node->places_.size(); ++i) {
uint32 index = node->places_.at(i);
if (index < trace.size()) {
LabelInfo* item = trace.at(index);
Node*& slot = node->edges_[item];
if (slot == NULL) {
slot = new Node(item, node);
all_nodes_.push_back(slot);
node->edges_in_frequency_order.push_back(slot);
}
slot->places_.push_back(index + 1);
++slot->count_;
}
}
node->edges_in_frequency_order.sort(OrderNodeByCountDecreasing());
}
const Trace& m_trace_;
const Trace& p_trace_;
Node* m_root_;
Node* p_root_;
NodeQueue worklist_;
NodeQueue unsolved_;
std::vector<Node*> all_nodes_;
DISALLOW_COPY_AND_ASSIGN(AssignmentProblem);
};
class GraphAdjuster : public AdjustmentMethod {
public:
GraphAdjuster() {}
~GraphAdjuster() {}
bool Adjust(const AssemblyProgram& model, AssemblyProgram* program) {
LOG(INFO) << "GraphAdjuster::Adjust";
prog_ = program;
model_ = &model;
debug_label_index_gen_ = 0;
return Finish();
}
bool Finish() {
prog_->UnassignIndexes();
CollectTraces(model_, &model_abs32_, &model_rel32_, true);
CollectTraces(prog_, &prog_abs32_, &prog_rel32_, false);
Solve(model_abs32_, prog_abs32_);
Solve(model_rel32_, prog_rel32_);
prog_->AssignRemainingIndexes();
return true;
}
private:
void CollectTraces(const AssemblyProgram* program, Trace* abs32, Trace* rel32,
bool is_model) {
const std::vector<Instruction*>& instructions = program->instructions();
for (size_t i = 0; i < instructions.size(); ++i) {
Instruction* instruction = instructions.at(i);
if (Label* label = program->InstructionAbs32Label(instruction))
ReferenceLabel(abs32, label, is_model);
if (Label* label = program->InstructionRel32Label(instruction))
ReferenceLabel(rel32, label, is_model);
}
// TODO(sra): we could simply append all the labels in index order to
// incorporate some costing for entropy (bigger deltas) that will be
// introduced into the label address table by non-monotonic ordering. This
// would have some knock-on effects to parts of the algorithm that work on
// single-occurence labels.
}
void Solve(const Trace& model, const Trace& problem) {
LinkLabelInfos(model);
LinkLabelInfos(problem);
AssignmentProblem a(model, problem);
a.Solve();
}
void LinkLabelInfos(const Trace& trace) {
typedef std::set<LabelInfo*, OrderLabelInfoByAddressAscending> Ordered;
Ordered ordered;
for (Trace::const_iterator p = trace.begin(); p != trace.end(); ++p)
ordered.insert(*p);
LabelInfo* prev = NULL;
for (Ordered::iterator p = ordered.begin(); p != ordered.end(); ++p) {
LabelInfo* curr = *p;
if (prev) prev->next_addr_ = curr;
curr->prev_addr_ = prev;
prev = curr;
if (curr->positions_.size() != curr->refs_)
NOTREACHED();
}
}
void ReferenceLabel(Trace* trace, Label* label, bool is_model) {
trace->push_back(MakeLabelInfo(label, is_model, trace->size()));
}
LabelInfo* MakeLabelInfo(Label* label, bool is_model, uint32 position) {
LabelInfo& slot = label_infos_[label];
if (slot.label_ == NULL) {
slot.label_ = label;
slot.is_model_ = is_model;
slot.debug_index_ = ++debug_label_index_gen_;
}
slot.positions_.push_back(position);
++slot.refs_;
return &slot;
}
AssemblyProgram* prog_; // Program to be adjusted, owned by caller.
const AssemblyProgram* model_; // Program to be mimicked, owned by caller.
Trace model_abs32_;
Trace model_rel32_;
Trace prog_abs32_;
Trace prog_rel32_;
int debug_label_index_gen_;
// Note LabelInfo is allocated inside map, so the LabelInfo lifetimes are
// managed by the map.
std::map<Label*, LabelInfo> label_infos_;
private:
DISALLOW_COPY_AND_ASSIGN(GraphAdjuster);
};
////////////////////////////////////////////////////////////////////////////////
void AdjustmentMethod::Destroy() { delete this; }
AdjustmentMethod* AdjustmentMethod::MakeNullAdjustmentMethod() {
return new NullAdjustmentMethod();
}
AdjustmentMethod* AdjustmentMethod::MakeTrieAdjustmentMethod() {
return new GraphAdjuster();
}
Status Adjust(const AssemblyProgram& model, AssemblyProgram* program) {
AdjustmentMethod* method = AdjustmentMethod::MakeProductionAdjustmentMethod();
bool ok = method->Adjust(model, program);
method->Destroy();
if (ok)
return C_OK;
else
return C_ADJUSTMENT_FAILED;
}
} // namespace courgette
|