summaryrefslogtreecommitdiffstats
path: root/courgette/adjustment_method_2.cc
blob: cacf33ea1753e12759cfda58d0742e1255e96a3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "courgette/adjustment_method.h"

#include <algorithm>
#include <limits>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>

#include "base/basictypes.h"
#include "base/format_macros.h"
#include "base/logging.h"
#include "base/string_util.h"
#include "base/time.h"

#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"
#include "courgette/image_info.h"

/*

Shingle weighting matching.

We have a sequence S1 of symbols from alphabet A1={A,B,C,...} called the 'model'
and a second sequence of S2 of symbols from alphabet A2={U,V,W,....} called the
'program'.  Each symbol in A1 has a unique numerical name or index.  We can
transcribe the sequence S1 to a sequence T1 of indexes of the symbols. We wish
to assign indexes to the symbols in A2 so that when we transcribe S2 into T2, T2
has long subsequences that occur in T1.  This will ensure that the sequence
T1;T2 compresses to be only slightly larger than the compressed T1.

The algorithm for matching members of S2 with members of S1 is eager - it makes
matches without backtracking, until no more matches can be made.  Each variable
(symbol) U,V,... in A2 has a set of candidates from A1, each candidate with a
weight summarizing the evidence for the match.  We keep a VariableQueue of
U,V,... sorted by how much the evidence for the best choice outweighs the
evidence for the second choice, i.e. prioritized by how 'clear cut' the best
assignment is.  We pick the variable with the most clear-cut candidate, make the
assignment, adjust the evidence and repeat.

What has not been described so far is how the evidence is gathered and
maintained.  We are working under the assumption that S1 and S2 are largely
similar.  (A different assumption might be that S1 and S2 are dissimilar except
for many long subsequences.)

A naive algorithm would consider all pairs (A,U) and for each pair assess the
benefit, or score, the assignment U:=A.  The score might count the number of
occurrences of U in S2 which appear in similar contexts to A in S1.

To distinguish contexts we view S1 and S2 as a sequence of overlapping k-length
substrings or 'shingles'.  Two shingles are compatible if the symbols in one
shingle could be matched with the symbols in the other symbol.  For example, ABC
is *not* compatible with UVU because it would require conflicting matches A=U
and C=U.  ABC is compatible with UVW, UWV, WUV, VUW etc.  We can't tell which
until we make an assignment - the compatible shingles form an equivalence class.
After assigning U:=A then only UVW and UWV (equivalently AVW, AWV) are
compatible.  As we make assignments the number of equivalence classes of
shingles increases and the number of members of each equivalence class
decreases.  The compatibility test becomes more restrictive.

We gather evidence for the potential assignment U:=A by counting how many
shingles containing U are compatible with shingles containing A.  Thus symbols
occurring a large number of times in compatible contexts will be assigned first.

Finding the 'most clear-cut' assignment by considering all pairs symbols and for
each pair comparing the contexts of each pair of occurrences of the symbols is
computationally infeasible.  We get the job done in a reasonable time by
approaching it 'backwards' and making incremental changes as we make
assignments.

First the shingles are partitioned according to compatibility.  In S1=ABCDD and
S2=UVWXX we have a total of 6 shingles, each occuring once. (ABC:1 BCD:1 CDD:1;
UVW:1 VWX: WXX:1) all fit the pattern <V0 V1 V2> or the pattern <V0 V1 V1>.  The
first pattern indicates that each position matches a different symbol, the
second pattern indicates that the second symbol is repeated.

  pattern      S1 members      S2 members
  <V0 V1 V2>:  {ABC:1, BCD:1}; {UVW:1, VWX:1}
  <V0 V1 V1>:  {CDD:1}         {WXX:1}

The second pattern appears to have a unique assignment but we don't make the
assignment on such scant evidence.  If S1 and S2 do not match exactly, there
will be numerous spurious low-score matches like this.  Instead we must see what
assignments are indicated by considering all of the evidence.

First pattern has 2 x 2 = 4 shingle pairs.  For each pair we count the number
of symbol assignments.  For ABC:a * UVW:b accumulate min(a,b) to each of
  {U:=A, V:=B, W:=C}.
After accumulating over all 2 x 2 pairs:
  U: {A:1  B:1}
  V: {A:1  B:2  C:1}
  W: {B:1  C:2  D:1 }
  X: {C:1  D:1}
The second pattern contributes:
  W: {C:1}
  X: {D:2}
Sum:
  U: {A:1  B:1}
  V: {A:1  B:2  C:1}
  W: {B:1  C:3  D:1}
  X: {C:1  D:3}

From this we decide to assign X:=D (because this assignment has both the largest
difference above the next candidate (X:=C) and this is also the largest
proportionately over the sum of alternatives).

Lets assume D has numerical 'name' 77.  The assignment X:=D sets X to 77 too.
Next we repartition all the shingles containing X or D:

  pattern      S1 members      S2 members
  <V0 V1 V2>:  {ABC:1};        {UVW:1}
  <V0 V1 77>:  {BCD:1};        {VWX:1}
  <V0 77 77>:  {CDD:1}         {WXX:1}
As we repartition, we recalculate the contributions to the scores:
  U: {A:1}
  V: {B:2}
  W: {C:3}
All the remaining assignments are now fixed.

There is one step in the incremental algorithm that is still infeasibly
expensive: the contributions due to the cross product of large equivalence
classes.  We settle for making an approximation by computing the contribution of
the cross product of only the most common shingles.  The hope is that the noise
from the long tail of uncounted shingles is well below the scores being used to
pick assignments.  The second hope is that as assignment are made, the large
equivalence class will be partitioned into smaller equivalence classes, reducing
the noise over time.

In the code below the shingles are bigger (Shingle::kWidth = 5).
Class ShinglePattern holds the data for one pattern.

There is an optimization for this case:
  <V0 V1 V1>:  {CDD:1}         {WXX:1}

Above we said that we don't make an assignment on this "scant evidence".  There
is an exception: if there is only one variable unassigned (more like the <V0 77
77> pattern) AND there are no occurrences of C and W other than those counted in
this pattern, then there is no competing evidence and we go ahead with the
assignment immediately.  This produces slightly better results because these
cases tend to be low-scoring and susceptible to small mistakes made in
low-scoring assignments in the approximation for large equivalence classes.

*/

namespace courgette {
namespace adjustment_method_2 {

////////////////////////////////////////////////////////////////////////////////

class AssignmentCandidates;
class LabelInfoMaker;
class Shingle;
class ShinglePattern;

// The purpose of adjustment is to assign indexes to Labels of a program 'p' to
// make the sequence of indexes similar to a 'model' program 'm'.  Labels
// themselves don't have enough information to do this job, so we work with a
// LabelInfo surrogate for each label.
//
class LabelInfo {
 public:
  // Just a no-argument constructor and copy constructor.  Actual LabelInfo
  // objects are allocated in std::pair structs in a std::map.
  LabelInfo()
      : label_(NULL), is_model_(false), debug_index_(0), refs_(0),
        assignment_(NULL), candidates_(NULL)
  {}

  ~LabelInfo();

  AssignmentCandidates* candidates();

  Label* label_;             // The label that this info a surrogate for.

  uint32 is_model_ : 1;      // Is the label in the model?
  uint32 debug_index_ : 31;  // A small number for naming the label in debug
                             // output. The pair (is_model_, debug_index_) is
                             // unique.

  int refs_;                 // Number of times this Label is referenced.

  LabelInfo* assignment_;    // Label from other program corresponding to this.

  std::vector<uint32> positions_;  // Offsets into the trace of references.

 private:
  AssignmentCandidates* candidates_;

  void operator=(const LabelInfo*);  // Disallow assignment only.
  // Public compiler generated copy constructor is needed to constuct
  // std::pair<Label*, LabelInfo> so that fresh LabelInfos can be allocated
  // inside a std::map.
};

typedef std::vector<LabelInfo*> Trace;

std::string ToString(const LabelInfo* info) {
  std::string s;
  base::StringAppendF(&s, "%c%d", "pm"[info->is_model_], info->debug_index_);
  if (info->label_->index_ != Label::kNoIndex)
    base::StringAppendF(&s, " (%d)", info->label_->index_);

  base::StringAppendF(&s, " #%u", info->refs_);
  return s;
}

// LabelInfoMaker maps labels to their surrogate LabelInfo objects.
class LabelInfoMaker {
 public:
  LabelInfoMaker() : debug_label_index_gen_(0) {}

  LabelInfo* MakeLabelInfo(Label* label, bool is_model, uint32 position) {
    LabelInfo& slot = label_infos_[label];
    if (slot.label_ == NULL) {
      slot.label_ = label;
      slot.is_model_ = is_model;
      slot.debug_index_ = ++debug_label_index_gen_;
    }
    slot.positions_.push_back(position);
    ++slot.refs_;
    return &slot;
  }

  void ResetDebugLabel() { debug_label_index_gen_ = 0; }

 private:
  int debug_label_index_gen_;

  // Note LabelInfo is allocated 'flat' inside map::value_type, so the LabelInfo
  // lifetimes are managed by the map.
  std::map<Label*, LabelInfo> label_infos_;

  DISALLOW_COPY_AND_ASSIGN(LabelInfoMaker);
};

struct OrderLabelInfo {
  bool operator()(const LabelInfo* a, const LabelInfo* b) const {
    if (a->label_->rva_ < b->label_->rva_) return true;
    if (a->label_->rva_ > b->label_->rva_) return false;
    if (a == b) return false;
    return a->positions_ < b->positions_;  // Lexicographic ordering of vector.
  }
};

// AssignmentCandidates is a priority queue of candidate assignments to
// a single program LabelInfo, |program_info_|.
class AssignmentCandidates {
 public:
  explicit AssignmentCandidates(LabelInfo* program_info)
      : program_info_(program_info) {}

  LabelInfo* program_info() const { return program_info_; }

  bool empty() const { return label_to_score_.empty(); }

  LabelInfo* top_candidate() const { return queue_.begin()->second; }

  void Update(LabelInfo* model_info, int delta_score) {
    LOG_ASSERT(delta_score != 0);
    int old_score = 0;
    int new_score = 0;
    LabelToScore::iterator p = label_to_score_.find(model_info);
    if (p != label_to_score_.end()) {
      old_score = p->second;
      new_score = old_score + delta_score;
      queue_.erase(ScoreAndLabel(old_score, p->first));
      if (new_score == 0) {
        label_to_score_.erase(p);
      } else {
        p->second = new_score;
        queue_.insert(ScoreAndLabel(new_score, model_info));
      }
    } else {
      new_score = delta_score;
      label_to_score_.insert(std::make_pair(model_info, new_score));
      queue_.insert(ScoreAndLabel(new_score, model_info));
    }
    LOG_ASSERT(queue_.size() == label_to_score_.size());
  }

  int TopScore() const {
    int first_value = 0;
    int second_value = 0;
    Queue::const_iterator p = queue_.begin();
    if (p != queue_.end()) {
      first_value = p->first;
      ++p;
      if (p != queue_.end()) {
        second_value = p->first;
      }
    }
    return first_value - second_value;
  }

  bool HasPendingUpdates() { return !pending_updates_.empty(); }

  void AddPendingUpdate(LabelInfo* model_info, int delta_score) {
    LOG_ASSERT(delta_score != 0);
    pending_updates_[model_info] += delta_score;
  }

  void ApplyPendingUpdates() {
    // TODO(sra): try to walk |pending_updates_| and |label_to_score_| in
    // lockstep.  Try to batch updates to |queue_|.
    size_t zeroes = 0;
    for (LabelToScore::iterator p = pending_updates_.begin();
         p != pending_updates_.end();
         ++p) {
      if (p->second != 0)
        Update(p->first, p->second);
      else
        ++zeroes;
    }
    pending_updates_.clear();
  }

  void Print(int max) {
    VLOG(2) << "score "  << TopScore() << "  " << ToString(program_info_)
            << " := ?";
    if (!pending_updates_.empty())
      VLOG(2) << pending_updates_.size() << " pending";
    int count = 0;
    for (Queue::iterator q = queue_.begin();  q != queue_.end();  ++q) {
      if (++count > max) break;
      VLOG(2) << "   " << q->first << "  " << ToString(q->second);
    }
  }

 private:
  typedef std::map<LabelInfo*, int, OrderLabelInfo> LabelToScore;
  typedef std::pair<int, LabelInfo*> ScoreAndLabel;
  struct OrderScoreAndLabelByScoreDecreasing {
    OrderLabelInfo tie_breaker;
    bool operator()(const ScoreAndLabel& a, const ScoreAndLabel& b) const {
      if (a.first > b.first) return true;
      if (a.first < b.first) return false;
      return tie_breaker(a.second, b.second);
    }
  };
  typedef std::set<ScoreAndLabel, OrderScoreAndLabelByScoreDecreasing> Queue;

  LabelInfo* program_info_;
  LabelToScore label_to_score_;
  LabelToScore pending_updates_;
  Queue queue_;
};

AssignmentCandidates* LabelInfo::candidates() {
  if (candidates_ == NULL)
    candidates_ = new AssignmentCandidates(this);
  return candidates_;
}

LabelInfo::~LabelInfo() {
  delete candidates_;
}

// A Shingle is a short fixed-length string of LabelInfos that actually occurs
// in a Trace.  A Shingle may occur many times.  We repesent the Shingle by the
// position of one of the occurrences in the Trace.
class Shingle {
 public:
  static const size_t kWidth = 5;

  struct InterningLess {
    bool operator()(const Shingle& a, const Shingle& b) const;
  };

  typedef std::set<Shingle, InterningLess> OwningSet;

  static Shingle* Find(const Trace& trace, size_t position,
                       OwningSet* owning_set) {
    std::pair<OwningSet::iterator, bool> pair =
        owning_set->insert(Shingle(trace, position));
    // pair.first iterator 'points' to the newly inserted Shingle or the
    // previouly inserted one that looks the same according to the comparator.

    // const_cast required because key is const.  We modify the Shingle
    // extensively but not in a way that affects InterningLess.
    Shingle* shingle = const_cast<Shingle*>(&*pair.first);
    shingle->add_position(position);
    return shingle;
  }

  LabelInfo* at(size_t i) const { return trace_[exemplar_position_ + i]; }
  void add_position(size_t position) {
    positions_.push_back(static_cast<uint32>(position));
  }
  int position_count() const { return static_cast<int>(positions_.size()); }

  bool InModel() const { return at(0)->is_model_; }

  ShinglePattern* pattern() const { return pattern_; }
  void set_pattern(ShinglePattern* pattern) { pattern_ = pattern; }

  struct PointerLess {
    bool operator()(const Shingle* a, const Shingle* b) const {
      // Arbitrary but repeatable (memory-address) independent ordering:
      return a->exemplar_position_ < b->exemplar_position_;
      // return InterningLess()(*a, *b);
    }
  };

 private:
  Shingle(const Trace& trace, size_t exemplar_position)
      : trace_(trace),
        exemplar_position_(exemplar_position),
        pattern_(NULL) {
  }

  const Trace& trace_;             // The shingle lives inside trace_.
  size_t exemplar_position_;       // At this position (and other positions).
  std::vector<uint32> positions_;  // Includes exemplar_position_.

  ShinglePattern* pattern_;       // Pattern changes as LabelInfos are assigned.

  friend std::string ToString(const Shingle* instance);

  // We can't disallow the copy constructor because we use std::set<Shingle> and
  // VS2005's implementation of std::set<T>::set() requires T to have a copy
  // constructor.
  //   DISALLOW_COPY_AND_ASSIGN(Shingle);
  void operator=(const Shingle&);  // Disallow assignment only.
};

std::string ToString(const Shingle* instance) {
  std::string s;
  const char* sep = "<";
  for (size_t i = 0; i < Shingle::kWidth; ++i) {
    // base::StringAppendF(&s, "%s%x ", sep, instance.at(i)->label_->rva_);
    s += sep;
    s += ToString(instance->at(i));
    sep = ", ";
  }
  base::StringAppendF(&s, ">(%" PRIuS ")@{%d}",
                      instance->exemplar_position_,
                      instance->position_count());
  return s;
}


bool Shingle::InterningLess::operator()(
    const Shingle& a,
    const Shingle& b) const {
  for (size_t i = 0;  i < kWidth;  ++i) {
    LabelInfo* info_a = a.at(i);
    LabelInfo* info_b = b.at(i);
    if (info_a->label_->rva_ < info_b->label_->rva_)
      return true;
    if (info_a->label_->rva_ > info_b->label_->rva_)
      return false;
    if (info_a->is_model_ < info_b->is_model_)
      return true;
    if (info_a->is_model_ > info_b->is_model_)
      return false;
    if (info_a != info_b) {
      NOTREACHED();
    }
  }
  return false;
}

class ShinglePattern {
 public:
  enum { kOffsetMask = 7,  // Offset lives in low bits.
         kFixed    = 0,    // kind & kVariable == 0  => fixed.
         kVariable = 8     // kind & kVariable == 1  => variable.
         };
  // sequence[position + (kinds_[i] & kOffsetMask)] gives LabelInfo for position
  // i of shingle.  Below, second 'A' is duplicate of position 1, second '102'
  // is duplicate of position 0.
  //
  //   <102, A, 103, A , 102>
  //      --> <kFixed+0, kVariable+1, kFixed+2, kVariable+1, kFixed+0>
  struct Index {
    explicit Index(const Shingle* instance);
    uint8 kinds_[Shingle::kWidth];
    uint8 variables_;
    uint8 unique_variables_;
    uint8 first_variable_index_;
    uint32 hash_;
    int assigned_indexes_[Shingle::kWidth];
  };

  // ShinglePattern keeps histograms of member Shingle instances, ordered by
  // decreasing number of occurrences.  We don't have a pair (occurrence count,
  // Shingle instance), so we use a FreqView adapter to make the instance
  // pointer look like the pair.
  class FreqView {
   public:
    explicit FreqView(const Shingle* instance) : instance_(instance) {}
    int count() const { return instance_->position_count(); }
    const Shingle* instance() const { return instance_; }
    struct Greater {
      bool operator()(const FreqView& a, const FreqView& b) const {
        if (a.count() > b.count()) return true;
        if (a.count() < b.count()) return false;
        return resolve_ties(a.instance(), b.instance());
      }
     private:
      Shingle::PointerLess resolve_ties;
    };
   private:
    const Shingle* instance_;
  };

  typedef std::set<FreqView, FreqView::Greater> Histogram;

  ShinglePattern() : index_(NULL), model_coverage_(0), program_coverage_(0) {}

  const Index* index_;  // Points to the key in the owning map value_type.
  Histogram model_histogram_;
  Histogram program_histogram_;
  int model_coverage_;
  int program_coverage_;
};

std::string ToString(const ShinglePattern::Index* index) {
  std::string s;
  if (index == NULL) {
    s = "<null>";
  } else {
    base::StringAppendF(&s, "<%d: ", index->variables_);
    const char* sep = "";
    for (size_t i = 0;  i < Shingle::kWidth;  ++i) {
      s += sep;
      sep = ", ";
      uint32 kind = index->kinds_[i];
      int offset = kind & ShinglePattern::kOffsetMask;
      if (kind & ShinglePattern::kVariable)
        base::StringAppendF(&s, "V%d", offset);
      else
        base::StringAppendF(&s, "%d", index->assigned_indexes_[offset]);
     }
    base::StringAppendF(&s, " %x", index->hash_);
    s += ">";
  }
  return s;
}

std::string HistogramToString(const ShinglePattern::Histogram& histogram,
                              size_t snippet_max) {
  std::string s;
  size_t histogram_size = histogram.size();
  size_t snippet_size = 0;
  for (ShinglePattern::Histogram::const_iterator p = histogram.begin();
       p != histogram.end();
       ++p) {
    if (++snippet_size > snippet_max && snippet_size != histogram_size) {
      s += " ...";
      break;
    }
    base::StringAppendF(&s, " %d", p->count());
  }
  return s;
}

std::string HistogramToStringFull(const ShinglePattern::Histogram& histogram,
                                  const char* indent,
                                  size_t snippet_max) {
  std::string s;

  size_t histogram_size = histogram.size();
  size_t snippet_size = 0;
  for (ShinglePattern::Histogram::const_iterator p = histogram.begin();
       p != histogram.end();
       ++p) {
    s += indent;
    if (++snippet_size > snippet_max && snippet_size != histogram_size) {
      s += "...\n";
      break;
    }
    base::StringAppendF(&s, "(%d) ", p->count());
    s += ToString(&(*p->instance()));
    s += "\n";
  }
  return s;
}

std::string ToString(const ShinglePattern* pattern, size_t snippet_max = 3) {
  std::string s;
  if (pattern == NULL) {
    s = "<null>";
  } else {
    s = "{";
    s += ToString(pattern->index_);
    base::StringAppendF(&s, ";  %d(%d):",
                        static_cast<int>(pattern->model_histogram_.size()),
                        pattern->model_coverage_);

    s += HistogramToString(pattern->model_histogram_, snippet_max);
    base::StringAppendF(&s, ";  %d(%d):",
                        static_cast<int>(pattern->program_histogram_.size()),
                        pattern->program_coverage_);
    s += HistogramToString(pattern->program_histogram_, snippet_max);
    s += "}";
  }
  return s;
}

std::string ShinglePatternToStringFull(const ShinglePattern* pattern,
                                       size_t max) {
  std::string s;
  s += ToString(pattern->index_);
  s += "\n";
  size_t model_size = pattern->model_histogram_.size();
  size_t program_size = pattern->program_histogram_.size();
  base::StringAppendF(&s, "  model shingles %" PRIuS "\n", model_size);
  s += HistogramToStringFull(pattern->model_histogram_, "    ", max);
  base::StringAppendF(&s, "  program shingles %" PRIuS "\n", program_size);
  s += HistogramToStringFull(pattern->program_histogram_, "    ", max);
  return s;
}

struct ShinglePatternIndexLess {
  bool operator()(const ShinglePattern::Index& a,
                  const ShinglePattern::Index& b) const {
    if (a.hash_ < b.hash_) return true;
    if (a.hash_ > b.hash_) return false;

    for (size_t i = 0;  i < Shingle::kWidth;  ++i) {
      if (a.kinds_[i] < b.kinds_[i]) return true;
      if (a.kinds_[i] > b.kinds_[i]) return false;
      if ((a.kinds_[i] & ShinglePattern::kVariable) == 0) {
        if (a.assigned_indexes_[i] < b.assigned_indexes_[i])
          return true;
        if (a.assigned_indexes_[i] > b.assigned_indexes_[i])
          return false;
      }
    }
    return false;
  }
};

static uint32 hash_combine(uint32 h, uint32 v) {
  h += v;
  return (h * (37 + 0x0000d100)) ^ (h >> 13);
}

ShinglePattern::Index::Index(const Shingle* instance) {
  uint32 hash = 0;
  variables_ = 0;
  unique_variables_ = 0;
  first_variable_index_ = 255;

  for (uint32 i = 0; i < Shingle::kWidth; ++i) {
    LabelInfo* info = instance->at(i);
    uint32 kind = 0;
    int code = -1;
    size_t j = 0;
    for ( ; j < i; ++j) {
      if (info == instance->at(j)) {  // Duplicate LabelInfo
        kind = kinds_[j];
        break;
      }
    }
    if (j == i) {  // Not found above.
      if (info->assignment_) {
        code = info->label_->index_;
        assigned_indexes_[i] = code;
        kind = kFixed + i;
      } else {
        kind = kVariable + i;
        ++unique_variables_;
        if (i < first_variable_index_)
          first_variable_index_ = i;
      }
    }
    if (kind & kVariable) ++variables_;
    hash = hash_combine(hash, code);
    hash = hash_combine(hash, kind);
    kinds_[i] = kind;
    assigned_indexes_[i] = code;
  }
  hash_ = hash;
}

struct ShinglePatternLess {
  bool operator()(const ShinglePattern& a, const ShinglePattern& b) const {
    return index_less(*a.index_, *b.index_);
  }
  ShinglePatternIndexLess index_less;
};

struct ShinglePatternPointerLess {
  bool operator()(const ShinglePattern* a, const ShinglePattern* b) const {
    return pattern_less(*a, *b);
  }
  ShinglePatternLess pattern_less;
};

template<int (*Scorer)(const ShinglePattern*)>
struct OrderShinglePatternByScoreDescending {
  bool operator()(const ShinglePattern* a, const ShinglePattern* b) const {
    int score_a = Scorer(a);
    int score_b = Scorer(b);
    if (score_a > score_b) return true;
    if (score_a < score_b) return false;
    return break_ties(a, b);
  }
  ShinglePatternPointerLess break_ties;
};

// Returns a score for a 'Single Use' rule.  Returns -1 if the rule is not
// applicable.
int SingleUseScore(const ShinglePattern* pattern) {
  if (pattern->index_->variables_ != 1)
    return -1;

  if (pattern->model_histogram_.size() != 1 ||
      pattern->program_histogram_.size() != 1)
    return -1;

  // Does this pattern account for all uses of the variable?
  const ShinglePattern::FreqView& program_freq =
      *pattern->program_histogram_.begin();
  const ShinglePattern::FreqView& model_freq =
      *pattern->model_histogram_.begin();
  int p1 = program_freq.count();
  int m1 = model_freq.count();
  if (p1 == m1) {
    const Shingle* program_instance = program_freq.instance();
    const Shingle* model_instance = model_freq.instance();
    size_t variable_index = pattern->index_->first_variable_index_;
    LabelInfo* program_info = program_instance->at(variable_index);
    LabelInfo* model_info = model_instance->at(variable_index);
    if (!program_info->assignment_) {
      if (program_info->refs_ == p1 && model_info->refs_ == m1) {
        return p1;
      }
    }
  }
  return -1;
}

// The VariableQueue is a priority queue of unassigned LabelInfos from
// the 'program' (the 'variables') and their AssignmentCandidates.
class VariableQueue {
 public:
  typedef std::pair<int, LabelInfo*> ScoreAndLabel;

  VariableQueue() {}

  bool empty() const { return queue_.empty(); }

  const ScoreAndLabel& first() const { return *queue_.begin(); }

  // For debugging only.
  void Print() const {
    for (Queue::const_iterator p = queue_.begin();  p != queue_.end();  ++p) {
      AssignmentCandidates* candidates = p->second->candidates();
      candidates->Print(std::numeric_limits<int>::max());
    }
  }

  void AddPendingUpdate(LabelInfo* program_info, LabelInfo* model_info,
                        int delta_score) {
    AssignmentCandidates* candidates = program_info->candidates();
    if (!candidates->HasPendingUpdates()) {
      pending_update_candidates_.push_back(candidates);
    }
    candidates->AddPendingUpdate(model_info, delta_score);
  }

  void ApplyPendingUpdates() {
    for (size_t i = 0;  i < pending_update_candidates_.size();  ++i) {
      AssignmentCandidates* candidates = pending_update_candidates_[i];
      int old_score = candidates->TopScore();
      queue_.erase(ScoreAndLabel(old_score, candidates->program_info()));
      candidates->ApplyPendingUpdates();
      if (!candidates->empty()) {
        int new_score = candidates->TopScore();
        queue_.insert(ScoreAndLabel(new_score, candidates->program_info()));
      }
    }
    pending_update_candidates_.clear();
  }

 private:
  struct OrderScoreAndLabelByScoreDecreasing {
    bool operator()(const ScoreAndLabel& a, const ScoreAndLabel& b) const {
      if (a.first > b.first) return true;
      if (a.first < b.first) return false;
      return OrderLabelInfo()(a.second, b.second);
    }
  };
  typedef std::set<ScoreAndLabel, OrderScoreAndLabelByScoreDecreasing> Queue;

  Queue queue_;
  std::vector<AssignmentCandidates*> pending_update_candidates_;

  DISALLOW_COPY_AND_ASSIGN(VariableQueue);
};


class AssignmentProblem {
 public:
  AssignmentProblem(const Trace& trace, size_t model_end)
      : trace_(trace),
        model_end_(model_end) {
    VLOG(2) << "AssignmentProblem::AssignmentProblem  " << model_end << ", "
            << trace.size();
  }

  bool Solve() {
    if (model_end_ < Shingle::kWidth ||
        trace_.size() - model_end_ < Shingle::kWidth) {
      // Nothing much we can do with such a short problem.
      return true;
    }
    instances_.resize(trace_.size() - Shingle::kWidth + 1, NULL);
    AddShingles(0, model_end_);
    AddShingles(model_end_, trace_.size());
    InitialClassify();
    AddPatternsNeedingUpdatesToQueues();

    patterns_needing_updates_.clear();
    while (FindAndAssignBestLeader())
      patterns_needing_updates_.clear();
    PrintActivePatterns();

    return true;
  }

 private:
  typedef std::set<Shingle*, Shingle::PointerLess> ShingleSet;

  typedef std::set<const ShinglePattern*, ShinglePatternPointerLess>
      ShinglePatternSet;

  // Patterns are partitioned into the following sets:

  // * Retired patterns (not stored).  No shingles exist for this pattern (they
  //   all now match more specialized patterns).
  // * Useless patterns (not stored).  There are no 'program' shingles for this
  //   pattern (they all now match more specialized patterns).
  // * Single-use patterns - single_use_pattern_queue_.
  // * Other patterns - active_non_single_use_patterns_ / variable_queue_.

  typedef std::set<const ShinglePattern*,
                   OrderShinglePatternByScoreDescending<&SingleUseScore> >
      SingleUsePatternQueue;

  void PrintPatternsHeader() const {
    VLOG(2) << shingle_instances_.size() << " instances  "
            << trace_.size() << " trace length  "
            << patterns_.size() << " shingle indexes  "
            << single_use_pattern_queue_.size() << " single use patterns  "
            << active_non_single_use_patterns_.size() << " active patterns";
  }

  void PrintActivePatterns() const {
    for (ShinglePatternSet::const_iterator p =
             active_non_single_use_patterns_.begin();
         p != active_non_single_use_patterns_.end();
         ++p) {
      const ShinglePattern* pattern = *p;
      VLOG(2) << ToString(pattern, 10);
    }
  }

  void PrintPatterns() const {
    PrintAllPatterns();
    PrintActivePatterns();
    PrintAllShingles();
  }

  void PrintAllPatterns() const {
    for (IndexToPattern::const_iterator p = patterns_.begin();
         p != patterns_.end();
         ++p) {
      const ShinglePattern& pattern = p->second;
      VLOG(2) << ToString(&pattern, 10);
    }
  }

  void PrintAllShingles() const {
    for (Shingle::OwningSet::const_iterator p = shingle_instances_.begin();
         p != shingle_instances_.end();
         ++p) {
      const Shingle& instance = *p;
      VLOG(2) << ToString(&instance) << "   " << ToString(instance.pattern());
    }
  }


  void AddShingles(size_t begin, size_t end) {
    for (size_t i = begin;  i + Shingle::kWidth - 1 < end;  ++i) {
      instances_[i] = Shingle::Find(trace_, i, &shingle_instances_);
    }
  }

  void Declassify(Shingle* shingle) {
    ShinglePattern* pattern = shingle->pattern();
    if (shingle->InModel()) {
      pattern->model_histogram_.erase(ShinglePattern::FreqView(shingle));
      pattern->model_coverage_ -= shingle->position_count();
    } else {
      pattern->program_histogram_.erase(ShinglePattern::FreqView(shingle));
      pattern->program_coverage_ -= shingle->position_count();
    }
    shingle->set_pattern(NULL);
  }

  void Reclassify(Shingle* shingle) {
    ShinglePattern* pattern = shingle->pattern();
    LOG_ASSERT(pattern == NULL);

    ShinglePattern::Index index(shingle);
    if (index.variables_ == 0)
      return;

    std::pair<IndexToPattern::iterator, bool> inserted =
        patterns_.insert(std::make_pair(index, ShinglePattern()));

    pattern = &inserted.first->second;
    pattern->index_ = &inserted.first->first;
    shingle->set_pattern(pattern);
    patterns_needing_updates_.insert(pattern);

    if (shingle->InModel()) {
      pattern->model_histogram_.insert(ShinglePattern::FreqView(shingle));
      pattern->model_coverage_ += shingle->position_count();
    } else {
      pattern->program_histogram_.insert(ShinglePattern::FreqView(shingle));
      pattern->program_coverage_ += shingle->position_count();
    }
  }

  void InitialClassify() {
    for (Shingle::OwningSet::iterator p = shingle_instances_.begin();
         p != shingle_instances_.end();
         ++p) {
      // GCC's set<T>::iterator::operator *() returns a const object.
      Reclassify(const_cast<Shingle*>(&*p));
    }
  }

  // For the positions in |info|, find the shingles that overlap that position.
  void AddAffectedPositions(LabelInfo* info, ShingleSet* affected_shingles) {
    const size_t kWidth = Shingle::kWidth;
    for (size_t i = 0;  i < info->positions_.size();  ++i) {
      size_t position = info->positions_[i];
      // Find bounds to the subrange of |trace_| we are in.
      size_t start = position < model_end_ ? 0 : model_end_;
      size_t end = position < model_end_ ? model_end_ : trace_.size();

      // Clip [position-kWidth+1, position+1)
      size_t low = position > start + kWidth - 1
          ? position - kWidth + 1
          : start;
      size_t high = position + kWidth < end ? position + 1 : end - kWidth + 1;

      for (size_t shingle_position = low;
           shingle_position < high;
           ++shingle_position) {
        Shingle* overlapping_shingle = instances_.at(shingle_position);
        affected_shingles->insert(overlapping_shingle);
      }
    }
  }

  void RemovePatternsNeedingUpdatesFromQueues() {
    for (ShinglePatternSet::iterator p = patterns_needing_updates_.begin();
         p != patterns_needing_updates_.end();
         ++p) {
      RemovePatternFromQueues(*p);
    }
  }

  void AddPatternsNeedingUpdatesToQueues() {
    for (ShinglePatternSet::iterator p = patterns_needing_updates_.begin();
         p != patterns_needing_updates_.end();
         ++p) {
      AddPatternToQueues(*p);
    }
    variable_queue_.ApplyPendingUpdates();
  }

  void RemovePatternFromQueues(const ShinglePattern* pattern) {
    int single_use_score = SingleUseScore(pattern);
    if (single_use_score > 0) {
      size_t n = single_use_pattern_queue_.erase(pattern);
      LOG_ASSERT(n == 1);
    } else if (pattern->program_histogram_.size() == 0 &&
               pattern->model_histogram_.size() == 0) {
      NOTREACHED();  // Should not come back to life.
    } else if (pattern->program_histogram_.size() == 0) {
      // Useless pattern.
    } else {
      active_non_single_use_patterns_.erase(pattern);
      AddPatternToLabelQueue(pattern, -1);
    }
  }

  void AddPatternToQueues(const ShinglePattern* pattern) {
    int single_use_score = SingleUseScore(pattern);
    if (single_use_score > 0) {
      single_use_pattern_queue_.insert(pattern);
    } else if (pattern->program_histogram_.size() == 0 &&
               pattern->model_histogram_.size() == 0) {
    } else if (pattern->program_histogram_.size() == 0) {
      // Useless pattern.
    } else {
      active_non_single_use_patterns_.insert(pattern);
      AddPatternToLabelQueue(pattern, +1);
    }
  }

  void AddPatternToLabelQueue(const ShinglePattern* pattern, int sign) {
    // For each possible assignment in this pattern, update the potential
    // contributions to the LabelInfo queues.

    // We want to find for each symbol (LabelInfo) the maximum contribution that
    // could be achieved by making shingle-wise assignments between shingles in
    // the model and shingles in the program.
    //
    // If the shingles in the histograms are independent (no two shingles have a
    // symbol in common) then any permutation of the assignments is possible,
    // and the maximum contribution can be found by taking the maximum over all
    // the pairs.
    //
    // If the shingles are dependent two things happen.  The maximum
    // contribution to any given symbol is a sum because the symbol has
    // contributions from all the shingles containing it.  Second, some
    // assignments are blocked by previous incompatible assignments.  We want to
    // avoid a combinatorial search, so we ignore the blocking.

    const size_t kUnwieldy = 5;

    typedef std::map<LabelInfo*, int> LabelToScore;
    typedef std::map<LabelInfo*, LabelToScore > ScoreSet;
    ScoreSet maxima;

    size_t n_model_samples = 0;
    for (ShinglePattern::Histogram::const_iterator model_iter =
             pattern->model_histogram_.begin();
         model_iter != pattern->model_histogram_.end();
         ++model_iter) {
      if (++n_model_samples > kUnwieldy) break;
      const ShinglePattern::FreqView& model_freq = *model_iter;
      int m1 = model_freq.count();
      const Shingle* model_instance = model_freq.instance();

      ScoreSet sums;
      size_t n_program_samples = 0;
      for (ShinglePattern::Histogram::const_iterator program_iter =
               pattern->program_histogram_.begin();
           program_iter != pattern->program_histogram_.end();
           ++program_iter) {
        if (++n_program_samples > kUnwieldy) break;
        const ShinglePattern::FreqView& program_freq = *program_iter;
        int p1 = program_freq.count();
        const Shingle* program_instance = program_freq.instance();

        // int score = p1;  // ? weigh all equally??
        int score = std::min(p1, m1);

        for (size_t i = 0;  i < Shingle::kWidth;  ++i) {
          LabelInfo* program_info = program_instance->at(i);
          LabelInfo* model_info = model_instance->at(i);
          if ((model_info->assignment_ == NULL) !=
              (program_info->assignment_ == NULL)) {
            VLOG(2) << "ERROR " << i
                    << "\n\t"  << ToString(pattern, 10)
                    << "\n\t" << ToString(program_instance)
                    << "\n\t" << ToString(model_instance);
          }
          if (!program_info->assignment_ && !model_info->assignment_) {
            sums[program_info][model_info] += score;
          }
        }

        for (ScoreSet::iterator assignee_iterator = sums.begin();
             assignee_iterator != sums.end();
             ++assignee_iterator) {
          LabelInfo* program_info = assignee_iterator->first;
          for (LabelToScore::iterator p = assignee_iterator->second.begin();
               p != assignee_iterator->second.end();
               ++p) {
            LabelInfo* model_info = p->first;
            int score = p->second;
            int* slot = &maxima[program_info][model_info];
            *slot = std::max(*slot, score);
          }
        }
      }
    }

    for (ScoreSet::iterator assignee_iterator = maxima.begin();
         assignee_iterator != maxima.end();
         ++assignee_iterator) {
      LabelInfo* program_info = assignee_iterator->first;
      for (LabelToScore::iterator p = assignee_iterator->second.begin();
           p != assignee_iterator->second.end();
           ++p) {
        LabelInfo* model_info = p->first;
        int score = sign * p->second;
        variable_queue_.AddPendingUpdate(program_info, model_info, score);
      }
    }
  }

  void AssignOne(LabelInfo* model_info, LabelInfo* program_info) {
    LOG_ASSERT(!model_info->assignment_);
    LOG_ASSERT(!program_info->assignment_);
    LOG_ASSERT(model_info->is_model_);
    LOG_ASSERT(!program_info->is_model_);

    VLOG(3) << "Assign " << ToString(program_info)
            << " := " << ToString(model_info);

    ShingleSet affected_shingles;
    AddAffectedPositions(model_info, &affected_shingles);
    AddAffectedPositions(program_info, &affected_shingles);

    for (ShingleSet::iterator p = affected_shingles.begin();
         p != affected_shingles.end();
         ++p) {
      patterns_needing_updates_.insert((*p)->pattern());
    }

    RemovePatternsNeedingUpdatesFromQueues();

    for (ShingleSet::iterator p = affected_shingles.begin();
         p != affected_shingles.end();
         ++p) {
      Declassify(*p);
    }

    program_info->label_->index_ = model_info->label_->index_;
    // Mark as assigned
    model_info->assignment_ = program_info;
    program_info->assignment_ = model_info;

    for (ShingleSet::iterator p = affected_shingles.begin();
         p != affected_shingles.end();
         ++p) {
      Reclassify(*p);
    }

    AddPatternsNeedingUpdatesToQueues();
  }

  bool AssignFirstVariableOfHistogramHead(const ShinglePattern& pattern) {
    const ShinglePattern::FreqView& program_1 =
        *pattern.program_histogram_.begin();
    const ShinglePattern::FreqView& model_1 = *pattern.model_histogram_.begin();
    const Shingle* program_instance = program_1.instance();
    const Shingle* model_instance = model_1.instance();
    size_t variable_index = pattern.index_->first_variable_index_;
    LabelInfo* program_info = program_instance->at(variable_index);
    LabelInfo* model_info = model_instance->at(variable_index);
    AssignOne(model_info, program_info);
    return true;
  }

  bool FindAndAssignBestLeader() {
    LOG_ASSERT(patterns_needing_updates_.empty());

    if (!single_use_pattern_queue_.empty()) {
      const ShinglePattern& pattern = **single_use_pattern_queue_.begin();
      return AssignFirstVariableOfHistogramHead(pattern);
    }

    if (variable_queue_.empty())
      return false;

    const VariableQueue::ScoreAndLabel best = variable_queue_.first();
    int score = best.first;
    LabelInfo* assignee = best.second;

    // TODO(sra): score (best.first) can be zero.  A zero score means we are
    // blindly picking between two (or more) alternatives which look the same.
    // If we exit on the first zero-score we sometimes get 3-4% better total
    // compression.  This indicates that 'infill' is doing a better job than
    // picking blindly.  Perhaps we can use an extended region around the
    // undistinguished competing alternatives to break the tie.
    if (score == 0) {
      variable_queue_.Print();
      return false;
    }

    AssignmentCandidates* candidates = assignee->candidates();
    if (candidates->empty())
      return false;  // Should not happen.

    AssignOne(candidates->top_candidate(), assignee);
    return true;
  }

 private:
  // The trace vector contains the model sequence [0, model_end_) followed by
  // the program sequence [model_end_, trace.end())
  const Trace& trace_;
  size_t model_end_;

  // |shingle_instances_| is the set of 'interned' shingles.
  Shingle::OwningSet shingle_instances_;

  // |instances_| maps from position in |trace_| to Shingle at that position.
  std::vector<Shingle*> instances_;

  SingleUsePatternQueue single_use_pattern_queue_;
  ShinglePatternSet active_non_single_use_patterns_;
  VariableQueue variable_queue_;

  // Transient information: when we make an assignment, we need to recompute
  // priority queue information derived from these ShinglePatterns.
  ShinglePatternSet patterns_needing_updates_;

  typedef std::map<ShinglePattern::Index,
                   ShinglePattern, ShinglePatternIndexLess> IndexToPattern;
  IndexToPattern patterns_;

  DISALLOW_COPY_AND_ASSIGN(AssignmentProblem);
};

class Adjuster : public AdjustmentMethod {
 public:
  Adjuster() : prog_(NULL), model_(NULL) {}
  ~Adjuster() {}

  bool Adjust(const AssemblyProgram& model, AssemblyProgram* program) {
    VLOG(1) << "Adjuster::Adjust";
    prog_ = program;
    model_ = &model;
    return Finish();
  }

  bool Finish() {
    prog_->UnassignIndexes();
    Trace abs32_trace_;
    Trace rel32_trace_;
    CollectTraces(model_, &abs32_trace_, &rel32_trace_, true);
    size_t abs32_model_end = abs32_trace_.size();
    size_t rel32_model_end = rel32_trace_.size();
    CollectTraces(prog_,  &abs32_trace_,  &rel32_trace_,  false);
    Solve(abs32_trace_, abs32_model_end);
    Solve(rel32_trace_, rel32_model_end);
    prog_->AssignRemainingIndexes();
    return true;
  }

 private:
  void CollectTraces(const AssemblyProgram* program, Trace* abs32, Trace* rel32,
                     bool is_model) {
    label_info_maker_.ResetDebugLabel();
    const std::vector<Instruction*>& instructions = program->instructions();
    for (size_t i = 0;  i < instructions.size();  ++i) {
      Instruction* instruction = instructions.at(i);
      if (Label* label = program->InstructionAbs32Label(instruction))
        ReferenceLabel(abs32, label, is_model);
      if (Label* label = program->InstructionRel32Label(instruction))
        ReferenceLabel(rel32, label, is_model);
    }
    // TODO(sra): we could simply append all the labels in index order to
    // incorporate some costing for entropy (bigger deltas) that will be
    // introduced into the label address table by non-monotonic ordering.  This
    // would have some knock-on effects to parts of the algorithm that work on
    // single-occurrence labels.
  }

  void Solve(const Trace& model, size_t model_end) {
    base::Time start_time = base::Time::Now();
    AssignmentProblem a(model, model_end);
    a.Solve();
    VLOG(1) << " Adjuster::Solve "
            << (base::Time::Now() - start_time).InSecondsF();
  }

  void ReferenceLabel(Trace* trace, Label* label, bool is_model) {
    trace->push_back(
        label_info_maker_.MakeLabelInfo(label, is_model,
                                        static_cast<uint32>(trace->size())));
  }

  AssemblyProgram* prog_;         // Program to be adjusted, owned by caller.
  const AssemblyProgram* model_;  // Program to be mimicked, owned by caller.

  LabelInfoMaker label_info_maker_;

 private:
  DISALLOW_COPY_AND_ASSIGN(Adjuster);
};

////////////////////////////////////////////////////////////////////////////////

}  // namespace adjustment_method_2

AdjustmentMethod* AdjustmentMethod::MakeShingleAdjustmentMethod() {
  return new adjustment_method_2::Adjuster();
}

}  // namespace courgette