1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/assembly_program.h"
#include <memory.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <vector>
#include "base/logging.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"
namespace courgette {
// Opcodes of simple assembly language
enum OP {
ORIGIN, // ORIGIN <rva> - set current address for assembly.
MAKERELOCS, // Generates a base relocation table.
DEFBYTE, // DEFBYTE <value> - emit a byte literal.
REL32, // REL32 <label> - emit a rel32 encoded reference to 'label'.
ABS32, // REL32 <label> - emit am abs32 encoded reference to 'label'.
LAST_OP
};
// Base class for instructions. Because we have so many instructions we want to
// keep them as small as possible. For this reason we avoid virtual functions.
//
class Instruction {
public:
OP op() const { return static_cast<OP>(op_); }
protected:
explicit Instruction(OP op) : op_(op), info_(0) {}
Instruction(OP op, unsigned int info) : op_(op), info_(info) {}
uint32 op_ : 4; // A few bits to store the OP code.
uint32 info_ : 28; // Remaining bits in first word available to subclass.
private:
DISALLOW_COPY_AND_ASSIGN(Instruction);
};
namespace {
// Sets the current address for the emitting instructions.
class OriginInstruction : public Instruction {
public:
explicit OriginInstruction(RVA rva) : Instruction(ORIGIN, 0), rva_(rva) {}
RVA origin_rva() const { return rva_; }
private:
RVA rva_;
};
// Emits an entire base relocation table.
class MakeRelocsInstruction : public Instruction {
public:
MakeRelocsInstruction() : Instruction(MAKERELOCS) {}
};
// Emits a single byte.
class ByteInstruction : public Instruction {
public:
explicit ByteInstruction(uint8 value) : Instruction(DEFBYTE, value) {}
uint8 byte_value() const { return info_; }
};
// A ABS32 to REL32 instruction emits a reference to a label's address.
class InstructionWithLabel : public Instruction {
public:
InstructionWithLabel(OP op, Label* label)
: Instruction(op, 0), label_(label) {
if (label == NULL) NOTREACHED();
}
Label* label() const { return label_; }
private:
Label* label_;
};
} // namespace
AssemblyProgram::AssemblyProgram()
: image_base_(0),
byte_instruction_cache_(NULL) {
}
static void DeleteContainedLabels(const RVAToLabel& labels) {
for (RVAToLabel::const_iterator p = labels.begin(); p != labels.end(); ++p)
delete p->second;
}
AssemblyProgram::~AssemblyProgram() {
for (size_t i = 0; i < instructions_.size(); ++i) {
Instruction* instruction = instructions_[i];
if (instruction->op() != DEFBYTE) // Will be in byte_instruction_cache_.
delete instruction;
}
if (byte_instruction_cache_) {
for (size_t i = 0; i < 256; ++i)
delete byte_instruction_cache_[i];
delete[] byte_instruction_cache_;
}
DeleteContainedLabels(rel32_labels_);
DeleteContainedLabels(abs32_labels_);
}
void AssemblyProgram::EmitMakeRelocsInstruction() {
Emit(new MakeRelocsInstruction());
}
void AssemblyProgram::EmitOriginInstruction(RVA rva) {
Emit(new OriginInstruction(rva));
}
void AssemblyProgram::EmitByteInstruction(uint8 byte) {
Emit(GetByteInstruction(byte));
}
void AssemblyProgram::EmitRel32(Label* label) {
Emit(new InstructionWithLabel(REL32, label));
}
void AssemblyProgram::EmitAbs32(Label* label) {
Emit(new InstructionWithLabel(ABS32, label));
}
Label* AssemblyProgram::FindOrMakeAbs32Label(RVA rva) {
return FindLabel(rva, &abs32_labels_);
}
Label* AssemblyProgram::FindOrMakeRel32Label(RVA rva) {
return FindLabel(rva, &rel32_labels_);
}
void AssemblyProgram::DefaultAssignIndexes() {
DefaultAssignIndexes(&abs32_labels_);
DefaultAssignIndexes(&rel32_labels_);
}
void AssemblyProgram::UnassignIndexes() {
UnassignIndexes(&abs32_labels_);
UnassignIndexes(&rel32_labels_);
}
void AssemblyProgram::AssignRemainingIndexes() {
AssignRemainingIndexes(&abs32_labels_);
AssignRemainingIndexes(&rel32_labels_);
}
Label* AssemblyProgram::InstructionAbs32Label(
const Instruction* instruction) const {
if (instruction->op() == ABS32)
return static_cast<const InstructionWithLabel*>(instruction)->label();
return NULL;
}
Label* AssemblyProgram::InstructionRel32Label(
const Instruction* instruction) const {
if (instruction->op() == REL32)
return static_cast<const InstructionWithLabel*>(instruction)->label();
return NULL;
}
Label* AssemblyProgram::FindLabel(RVA rva, RVAToLabel* labels) {
Label*& slot = (*labels)[rva];
if (slot == 0) {
slot = new Label(rva);
}
return slot;
}
void AssemblyProgram::UnassignIndexes(RVAToLabel* labels) {
for (RVAToLabel::iterator p = labels->begin(); p != labels->end(); ++p) {
Label* current = p->second;
current->index_ = Label::kNoIndex;
}
}
// DefaultAssignIndexes takes a set of labels and assigns indexes in increasing
// address order.
//
void AssemblyProgram::DefaultAssignIndexes(RVAToLabel* labels) {
int index = 0;
for (RVAToLabel::iterator p = labels->begin(); p != labels->end(); ++p) {
Label* current = p->second;
if (current->index_ != Label::kNoIndex)
NOTREACHED();
current->index_ = index;
++index;
}
}
// AssignRemainingIndexes assigns indexes to any addresses (labels) that are not
// yet assigned an index.
//
void AssemblyProgram::AssignRemainingIndexes(RVAToLabel* labels) {
// An address table compresses best when each index is associated with an
// address that is slight larger than the previous index.
// First see which indexes have not been used. The 'available' vector could
// grow even bigger, but the number of addresses is a better starting size
// than empty.
std::vector<bool> available(labels->size(), true);
int used = 0;
for (RVAToLabel::iterator p = labels->begin(); p != labels->end(); ++p) {
size_t index = p->second->index_;
if (index != Label::kNoIndex) {
while (index >= available.size())
available.push_back(true);
available.at(index) = false;
++used;
}
}
LOG(INFO) << used << " of " << labels->size() << " labels pre-assigned";
// Are there any unused labels that happen to be adjacent following a used
// label?
//
int fill_forward_count = 0;
Label* prev = 0;
for (RVAToLabel::iterator p = labels->begin(); p != labels->end(); ++p) {
Label* current = p->second;
if (current->index_ == Label::kNoIndex) {
size_t index = 0;
if (prev && prev->index_ != Label::kNoIndex)
index = prev->index_ + 1;
if (index < available.size() && available.at(index)) {
current->index_ = index;
available.at(index) = false;
++fill_forward_count;
}
}
prev = current;
}
// Are there any unused labels that happen to be adjacent preceeding a used
// label?
//
int fill_backward_count = 0;
int backward_refs = 0;
prev = 0;
for (RVAToLabel::reverse_iterator p = labels->rbegin();
p != labels->rend();
++p) {
Label* current = p->second;
if (current->index_ == Label::kNoIndex) {
int prev_index;
if (prev)
prev_index = prev->index_;
else
prev_index = available.size();
if (prev_index != 0 &&
prev_index != Label::kNoIndex &&
available.at(prev_index - 1)) {
current->index_ = prev_index - 1;
available.at(current->index_) = false;
++fill_backward_count;
}
}
prev = current;
}
// Fill in any remaining indexes
int fill_infill_count = 0;
int index = 0;
for (RVAToLabel::iterator p = labels->begin(); p != labels->end(); ++p) {
Label* current = p->second;
if (current->index_ == Label::kNoIndex) {
while (!available.at(index)) {
++index;
}
current->index_ = index;
available.at(index) = false;
++index;
++fill_infill_count;
}
}
LOG(INFO) << " fill"
<< " forward " << fill_forward_count << " "
<< " backward " << fill_backward_count << " "
<< " infill " << fill_infill_count;
}
typedef void (EncodedProgram::*DefineLabelMethod)(int index, RVA value);
static void DefineLabels(const RVAToLabel& labels,
EncodedProgram* encoded_format,
DefineLabelMethod define_label) {
for (RVAToLabel::const_iterator p = labels.begin(); p != labels.end(); ++p) {
Label* label = p->second;
(encoded_format->*define_label)(label->index_, label->rva_);
}
}
EncodedProgram* AssemblyProgram::Encode() const {
EncodedProgram* encoded = new EncodedProgram();
encoded->set_image_base(image_base_);
DefineLabels(abs32_labels_, encoded, &EncodedProgram::DefineAbs32Label);
DefineLabels(rel32_labels_, encoded, &EncodedProgram::DefineRel32Label);
encoded->EndLabels();
for (size_t i = 0; i < instructions_.size(); ++i) {
Instruction* instruction = instructions_[i];
switch (instruction->op()) {
case ORIGIN: {
OriginInstruction* org = static_cast<OriginInstruction*>(instruction);
encoded->AddOrigin(org->origin_rva());
break;
}
case DEFBYTE: {
uint8 b = static_cast<ByteInstruction*>(instruction)->byte_value();
encoded->AddCopy(1, &b);
break;
}
case REL32: {
Label* label = static_cast<InstructionWithLabel*>(instruction)->label();
encoded->AddRel32(label->index_);
break;
}
case ABS32: {
Label* label = static_cast<InstructionWithLabel*>(instruction)->label();
encoded->AddAbs32(label->index_);
break;
}
case MAKERELOCS: {
encoded->AddMakeRelocs();
break;
}
default: {
NOTREACHED() << "Unknown Insn OP kind";
}
}
}
return encoded;
}
Instruction* AssemblyProgram::GetByteInstruction(uint8 byte) {
if (!byte_instruction_cache_) {
byte_instruction_cache_ = new Instruction*[256];
for (int i = 0; i < 256; ++i) {
byte_instruction_cache_[i] = new ByteInstruction(static_cast<uint8>(i));
}
}
return byte_instruction_cache_[byte];
}
////////////////////////////////////////////////////////////////////////////////
Status Encode(AssemblyProgram* program, EncodedProgram** output) {
*output = NULL;
EncodedProgram *encoded = program->Encode();
if (encoded) {
*output = encoded;
return C_OK;
} else {
return C_GENERAL_ERROR;
}
}
} // namespace courgette
|