1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/disassembler.h"
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"
#include "courgette/image_info.h"
// COURGETTE_HISTOGRAM_TARGETS prints out a histogram of how frequently
// different target addresses are referenced. Purely for debugging.
#define COURGETTE_HISTOGRAM_TARGETS 0
namespace courgette {
class DisassemblerWin32X86 : public Disassembler {
public:
explicit DisassemblerWin32X86(PEInfo* pe_info)
: pe_info_(pe_info),
incomplete_disassembly_(false) {
}
virtual bool Disassemble(AssemblyProgram* target);
virtual void Destroy() { delete this; }
protected:
PEInfo& pe_info() { return *pe_info_; }
void ParseFile(AssemblyProgram* target);
bool ParseAbs32Relocs();
void ParseRel32RelocsFromSections();
void ParseRel32RelocsFromSection(const Section* section);
void ParseNonSectionFileRegion(uint32 start_file_offset,
uint32 end_file_offset,
AssemblyProgram* program);
void ParseFileRegion(const Section* section,
uint32 start_file_offset, uint32 end_file_offset,
AssemblyProgram* program);
#if COURGETTE_HISTOGRAM_TARGETS
void HistogramTargets(const char* kind, const std::map<RVA, int>& map);
#endif
PEInfo* pe_info_;
bool incomplete_disassembly_; // 'true' if can leave out 'uninteresting' bits
std::vector<RVA> abs32_locations_;
std::vector<RVA> rel32_locations_;
#if COURGETTE_HISTOGRAM_TARGETS
std::map<RVA, int> abs32_target_rvas_;
std::map<RVA, int> rel32_target_rvas_;
#endif
};
bool DisassemblerWin32X86::Disassemble(AssemblyProgram* target) {
if (!pe_info().ok())
return false;
target->set_image_base(pe_info().image_base());
if (!ParseAbs32Relocs())
return false;
ParseRel32RelocsFromSections();
ParseFile(target);
target->DefaultAssignIndexes();
return true;
}
static uint32 Read32LittleEndian(const void* address) {
return *reinterpret_cast<const uint32*>(address);
}
bool DisassemblerWin32X86::ParseAbs32Relocs() {
abs32_locations_.clear();
if (!pe_info().ParseRelocs(&abs32_locations_))
return false;
std::sort(abs32_locations_.begin(), abs32_locations_.end());
#if COURGETTE_HISTOGRAM_TARGETS
for (size_t i = 0; i < abs32_locations_.size(); ++i) {
RVA rva = abs32_locations_[i];
// The 4 bytes at the relocation are a reference to some address.
uint32 target_address = Read32LittleEndian(pe_info().RVAToPointer(rva));
++abs32_target_rvas_[target_address - pe_info().image_base()];
}
#endif
return true;
}
void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
uint32 file_offset = 0;
while (file_offset < pe_info().length()) {
const Section* section = pe_info().FindNextSection(file_offset);
if (section == NULL)
break;
if (file_offset < section->file_offset_of_raw_data)
file_offset = section->file_offset_of_raw_data;
ParseRel32RelocsFromSection(section);
file_offset += section->size_of_raw_data;
}
std::sort(rel32_locations_.begin(), rel32_locations_.end());
#if COURGETTE_HISTOGRAM_TARGETS
LOG(INFO) << "abs32_locations_ " << abs32_locations_.size();
LOG(INFO) << "rel32_locations_ " << rel32_locations_.size();
LOG(INFO) << "abs32_target_rvas_ " << abs32_target_rvas_.size();
LOG(INFO) << "rel32_target_rvas_ " << rel32_target_rvas_.size();
int common = 0;
std::map<RVA, int>::iterator abs32_iter = abs32_target_rvas_.begin();
std::map<RVA, int>::iterator rel32_iter = rel32_target_rvas_.begin();
while (abs32_iter != abs32_target_rvas_.end() &&
rel32_iter != rel32_target_rvas_.end()) {
if (abs32_iter->first < rel32_iter->first)
++abs32_iter;
else if (rel32_iter->first < abs32_iter->first)
++rel32_iter;
else {
++common;
++abs32_iter;
++rel32_iter;
}
}
LOG(INFO) << "common " << common;
#endif
}
void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section* section) {
// TODO(sra): use characteristic.
bool isCode = strcmp(section->name, ".text") == 0;
if (!isCode)
return;
uint32 start_file_offset = section->file_offset_of_raw_data;
uint32 end_file_offset = start_file_offset + section->size_of_raw_data;
RVA relocs_start_rva = pe_info().base_relocation_table().address_;
const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset);
const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset);
RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset);
RVA end_rva = start_rva + section->virtual_size;
// Quick way to convert from Pointer to RVA within a single Section is to
// subtract 'pointer_to_rva'.
const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
// Find the rel32 relocations.
const uint8* p = start_pointer;
while (p < end_pointer) {
RVA current_rva = p - adjust_pointer_to_rva;
if (current_rva == relocs_start_rva) {
uint32 relocs_size = pe_info().base_relocation_table().size_;
if (relocs_size) {
p += relocs_size;
continue;
}
}
//while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
// ++abs32_pos;
// Heuristic discovery of rel32 locations in instruction stream: are the
// next few bytes the start of an instruction containing a rel32
// addressing mode?
const uint8* rel32 = NULL;
if (p + 5 < end_pointer) {
if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32
rel32 = p + 1;
}
}
if (p + 6 < end_pointer) {
if (*p == 0x0F && (*(p+1) & 0xF0) == 0x80) { // Jcc long form
if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely
rel32 = p + 2;
}
}
if (rel32) {
RVA rel32_rva = rel32 - adjust_pointer_to_rva;
// Is there an abs32 reloc overlapping the candidate?
while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3)
++abs32_pos;
// Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
// region that could overlap rel32_rva.
if (abs32_pos != abs32_locations_.end()) {
if (*abs32_pos < rel32_rva + 4) {
// Beginning of abs32 reloc is before end of rel32 reloc so they
// overlap. Skip four bytes past the abs32 reloc.
p += (*abs32_pos + 4) - current_rva;
continue;
}
}
RVA target_rva = rel32_rva + 4 + Read32LittleEndian(rel32);
// To be valid, rel32 target must be within image, and within this
// section.
if (pe_info().IsValidRVA(target_rva) &&
start_rva <= target_rva && target_rva < end_rva) {
rel32_locations_.push_back(rel32_rva);
#if COURGETTE_HISTOGRAM_TARGETS
++rel32_target_rvas_[target_rva];
#endif
p += 4;
continue;
}
}
p += 1;
}
}
void DisassemblerWin32X86::ParseFile(AssemblyProgram* program) {
// Walk all the bytes in the file, whether or not in a section.
uint32 file_offset = 0;
while (file_offset < pe_info().length()) {
const Section* section = pe_info().FindNextSection(file_offset);
if (section == NULL) {
// No more sections. There should not be extra stuff following last
// section.
// ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
break;
}
if (file_offset < section->file_offset_of_raw_data) {
uint32 section_start_offset = section->file_offset_of_raw_data;
ParseNonSectionFileRegion(file_offset, section_start_offset, program);
file_offset = section_start_offset;
}
uint32 end = file_offset + section->size_of_raw_data;
ParseFileRegion(section, file_offset, end, program);
file_offset = end;
}
#if COURGETTE_HISTOGRAM_TARGETS
HistogramTargets("abs32 relocs", abs32_target_rvas_);
HistogramTargets("rel32 relocs", rel32_target_rvas_);
#endif
}
void DisassemblerWin32X86::ParseNonSectionFileRegion(
uint32 start_file_offset,
uint32 end_file_offset,
AssemblyProgram* program) {
if (incomplete_disassembly_)
return;
const uint8* start = pe_info().FileOffsetToPointer(start_file_offset);
const uint8* end = pe_info().FileOffsetToPointer(end_file_offset);
const uint8* p = start;
while (p < end) {
program->EmitByteInstruction(*p);
++p;
}
}
void DisassemblerWin32X86::ParseFileRegion(
const Section* section,
uint32 start_file_offset, uint32 end_file_offset,
AssemblyProgram* program) {
RVA relocs_start_rva = pe_info().base_relocation_table().address_;
const uint8* start_pointer = pe_info().FileOffsetToPointer(start_file_offset);
const uint8* end_pointer = pe_info().FileOffsetToPointer(end_file_offset);
RVA start_rva = pe_info().FileOffsetToRVA(start_file_offset);
RVA end_rva = start_rva + section->virtual_size;
// Quick way to convert from Pointer to RVA within a single Section is to
// subtract 'pointer_to_rva'.
const uint8* const adjust_pointer_to_rva = start_pointer - start_rva;
std::vector<RVA>::iterator rel32_pos = rel32_locations_.begin();
std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
program->EmitOriginInstruction(start_rva);
const uint8* p = start_pointer;
while (p < end_pointer) {
RVA current_rva = p - adjust_pointer_to_rva;
// The base relocation table is usually in the .relocs section, but it could
// actually be anywhere. Make sure we skip it because we will regenerate it
// during assembly.
if (current_rva == relocs_start_rva) {
program->EmitMakeRelocsInstruction();
uint32 relocs_size = pe_info().base_relocation_table().size_;
if (relocs_size) {
p += relocs_size;
continue;
}
}
while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
++abs32_pos;
if (abs32_pos != abs32_locations_.end() && *abs32_pos == current_rva) {
uint32 target_address = Read32LittleEndian(p);
RVA target_rva = target_address - pe_info().image_base();
// TODO(sra): target could be Label+offset. It is not clear how to guess
// which it might be. We assume offset==0.
program->EmitAbs32(program->FindOrMakeAbs32Label(target_rva));
p += 4;
continue;
}
while (rel32_pos != rel32_locations_.end() && *rel32_pos < current_rva)
++rel32_pos;
if (rel32_pos != rel32_locations_.end() && *rel32_pos == current_rva) {
RVA target_rva = current_rva + 4 + Read32LittleEndian(p);
program->EmitRel32(program->FindOrMakeRel32Label(target_rva));
p += 4;
continue;
}
if (incomplete_disassembly_) {
if ((abs32_pos == abs32_locations_.end() || end_rva <= *abs32_pos) &&
(rel32_pos == rel32_locations_.end() || end_rva <= *rel32_pos) &&
(end_rva <= relocs_start_rva || current_rva >= relocs_start_rva)) {
// No more relocs in this section, don't bother encoding bytes.
break;
}
}
program->EmitByteInstruction(*p);
p += 1;
}
}
#if COURGETTE_HISTOGRAM_TARGETS
// Histogram is printed to std::cout. It is purely for debugging the algorithm
// and is only enabled manually in 'exploration' builds. I don't want to add
// command-line configuration for this feature because this code has to be
// small, which means compiled-out.
void DisassemblerWin32X86::HistogramTargets(const char* kind,
const std::map<RVA, int>& map) {
int total = 0;
std::map<int, std::vector<RVA> > h;
for (std::map<RVA, int>::const_iterator p = map.begin();
p != map.end();
++p) {
h[p->second].push_back(p->first);
total += p->second;
}
std::cout << total << " " << kind << " to "
<< map.size() << " unique targets" << std::endl;
std::cout << "indegree: #targets-with-indegree (example)" << std::endl;
const int kFirstN = 15;
bool someSkipped = false;
int index = 0;
for (std::map<int, std::vector<RVA> >::reverse_iterator p = h.rbegin();
p != h.rend();
++p) {
++index;
if (index <= kFirstN || p->first <= 3) {
if (someSkipped) {
std::cout << "..." << std::endl;
}
size_t count = p->second.size();
std::cout << std::dec << p->first << ": " << count;
if (count <= 2) {
for (size_t i = 0; i < count; ++i)
std::cout << " " << pe_info().DescribeRVA(p->second[i]);
}
std::cout << std::endl;
someSkipped = false;
} else {
someSkipped = true;
}
}
}
#endif // COURGETTE_HISTOGRAM_TARGETS
Disassembler* Disassembler::MakeDisassemberWin32X86(PEInfo* pe_info) {
return new DisassemblerWin32X86(pe_info);
}
////////////////////////////////////////////////////////////////////////////////
Status ParseWin32X86PE(const void* buffer, size_t length,
AssemblyProgram** output) {
*output = NULL;
PEInfo* pe_info = new PEInfo();
pe_info->Init(buffer, length);
if (!pe_info->ParseHeader()) {
delete pe_info;
return C_INPUT_NOT_RECOGNIZED;
}
Disassembler* disassembler = Disassembler::MakeDisassemberWin32X86(pe_info);
AssemblyProgram* program = new AssemblyProgram();
if (!disassembler->Disassemble(program)) {
delete program;
disassembler->Destroy();
delete pe_info;
return C_DISASSEMBLY_FAILED;
}
disassembler->Destroy();
delete pe_info;
*output = program;
return C_OK;
}
void DeleteAssemblyProgram(AssemblyProgram* program) {
delete program;
}
} // namespace courgette
|