blob: b321e062533794291aee5bbc01eb2fdf74ab580c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/disassembler_elf_32_arm.h"
#include <algorithm>
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
#include "courgette/encoded_program.h"
namespace courgette {
DisassemblerElf32ARM::DisassemblerElf32ARM(const void* start, size_t length)
: DisassemblerElf32(start, length) {
}
// Convert an ELF relocation struction into an RVA
CheckBool DisassemblerElf32ARM::RelToRVA(Elf32_Rel rel, RVA* result) const {
// The rightmost byte of r_info is the type...
elf32_rel_arm_type_values type =
(elf32_rel_arm_type_values)(unsigned char)rel.r_info;
// The other 3 bytes of r_info are the symbol
uint32 symbol = rel.r_info >> 8;
switch(type)
{
case R_ARM_RELATIVE:
if (symbol != 0)
return false;
// This is a basic ABS32 relocation address
*result = rel.r_offset;
return true;
default:
return false;
}
return false;
}
CheckBool DisassemblerElf32ARM::ParseRelocationSection(
const Elf32_Shdr *section_header,
AssemblyProgram* program) {
// We can reproduce the R_386_RELATIVE entries in one of the relocation
// table based on other information in the patch, given these
// conditions....
//
// All R_386_RELATIVE entries are:
// 1) In the same relocation table
// 2) Are consecutive
// 3) Are sorted in memory address order
//
// Happily, this is normally the case, but it's not required by spec
// so we check, and just don't do it if we don't match up.
// The expectation is that one relocation section will contain
// all of our R_386_RELATIVE entries in the expected order followed
// by assorted other entries we can't use special handling for.
bool match = true;
// Walk all the bytes in the section, matching relocation table or not
size_t file_offset = section_header->sh_offset;
size_t section_end = section_header->sh_offset + section_header->sh_size;
Elf32_Rel *section_relocs_iter =
(Elf32_Rel *)OffsetToPointer(section_header->sh_offset);
uint32 section_relocs_count = section_header->sh_size /
section_header->sh_entsize;
if (abs32_locations_.size() > section_relocs_count)
match = false;
std::vector<RVA>::iterator reloc_iter = abs32_locations_.begin();
while (match && (reloc_iter != abs32_locations_.end())) {
if (section_relocs_iter->r_info != R_ARM_RELATIVE ||
section_relocs_iter->r_offset != *reloc_iter)
match = false;
section_relocs_iter++;
reloc_iter++;
}
if (match) {
// Skip over relocation tables
if (!program->EmitElfRelocationInstruction())
return false;
file_offset += sizeof(Elf32_Rel) * abs32_locations_.size();
}
return ParseSimpleRegion(file_offset, section_end, program);
}
CheckBool DisassemblerElf32ARM::ParseRel32RelocsFromSection(
const Elf32_Shdr* section_header) {
// TODO(paulgazz) find relative jumps in ARM assembly
return true;
}
} // namespace courgette
|