1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/image_info.h"
#include <memory.h>
#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <vector>
#include "base/logging.h"
namespace courgette {
std::string SectionName(const Section* section) {
if (section == NULL)
return "<none>";
char name[9];
memcpy(name, section->name, 8);
name[8] = '\0'; // Ensure termination.
return name;
}
PEInfo::PEInfo()
: failure_reason_("uninitialized"),
start_(0),
end_(0),
length_(0),
is_PE32_plus_(false),
file_length_(0),
optional_header_(NULL),
size_of_optional_header_(0),
offset_of_data_directories_(0),
machine_type_(0),
number_of_sections_(0),
sections_(NULL),
has_text_section_(false),
size_of_code_(0),
size_of_initialized_data_(0),
size_of_uninitialized_data_(0),
base_of_code_(0),
base_of_data_(0),
image_base_(0),
size_of_image_(0),
number_of_data_directories_(0) {
}
void PEInfo::Init(const void* start, size_t length) {
start_ = reinterpret_cast<const uint8*>(start);
length_ = static_cast<int>(length);
end_ = start_ + length_;
failure_reason_ = "unparsed";
}
// DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
// that during development I'm finding I need to call it when compiled in
// Release mode. Hence:
// TODO(sra): make this compile only for debug mode.
std::string PEInfo::DescribeRVA(RVA rva) const {
const Section* section = RVAToSection(rva);
std::ostringstream s;
s << std::hex << rva;
if (section) {
s << " (";
s << SectionName(section) << "+"
<< std::hex << (rva - section->virtual_address)
<< ")";
}
return s.str();
}
const Section* PEInfo::FindNextSection(uint32 fileOffset) const {
const Section* best = 0;
for (int i = 0; i < number_of_sections_; i++) {
const Section* section = §ions_[i];
if (section->size_of_raw_data > 0) { // i.e. has data in file.
if (fileOffset <= section->file_offset_of_raw_data) {
if (best == 0 ||
section->file_offset_of_raw_data < best->file_offset_of_raw_data) {
best = section;
}
}
}
}
return best;
}
const Section* PEInfo::RVAToSection(RVA rva) const {
for (int i = 0; i < number_of_sections_; i++) {
const Section* section = §ions_[i];
uint32 offset = rva - section->virtual_address;
if (offset < section->virtual_size) {
return section;
}
}
return NULL;
}
int PEInfo::RVAToFileOffset(RVA rva) const {
const Section* section = RVAToSection(rva);
if (section) {
uint32 offset = rva - section->virtual_address;
if (offset < section->size_of_raw_data) {
return section->file_offset_of_raw_data + offset;
} else {
return kNoOffset; // In section but not in file (e.g. uninit data).
}
}
// Small RVA values point into the file header in the loaded image.
// RVA 0 is the module load address which Windows uses as the module handle.
// RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
// DOS header.
if (rva == 0 || rva == 2)
return rva;
NOTREACHED();
return kNoOffset;
}
const uint8* PEInfo::RVAToPointer(RVA rva) const {
int file_offset = RVAToFileOffset(rva);
if (file_offset == kNoOffset)
return NULL;
else
return start_ + file_offset;
}
RVA PEInfo::FileOffsetToRVA(uint32 file_offset) const {
for (int i = 0; i < number_of_sections_; i++) {
const Section* section = §ions_[i];
uint32 offset = file_offset - section->file_offset_of_raw_data;
if (offset < section->size_of_raw_data) {
return section->virtual_address + offset;
}
}
return 0;
}
////////////////////////////////////////////////////////////////////////////////
namespace {
// Constants and offsets gleaned from WINNT.H and various articles on the
// format of Windows PE executables.
// This is FIELD_OFFSET(IMAGE_DOS_HEADER, e_lfanew):
const size_t kOffsetOfFileAddressOfNewExeHeader = 0x3c;
const uint16 kImageNtOptionalHdr32Magic = 0x10b;
const uint16 kImageNtOptionalHdr64Magic = 0x20b;
const size_t kSizeOfCoffHeader = 20;
const size_t kOffsetOfDataDirectoryFromImageOptionalHeader32 = 96;
const size_t kOffsetOfDataDirectoryFromImageOptionalHeader64 = 112;
// These helper functions avoid the need for casts in the main code.
inline uint16 ReadU16(const uint8* address, size_t offset) {
return *reinterpret_cast<const uint16*>(address + offset);
}
inline uint32 ReadU32(const uint8* address, size_t offset) {
return *reinterpret_cast<const uint32*>(address + offset);
}
inline uint64 ReadU64(const uint8* address, size_t offset) {
return *reinterpret_cast<const uint64*>(address + offset);
}
} // namespace
// ParseHeader attempts to match up the buffer with the Windows data
// structures that exist within a Windows 'Portable Executable' format file.
// Returns 'true' if the buffer matches, and 'false' if the data looks
// suspicious. Rather than try to 'map' the buffer to the numerous windows
// structures, we extract the information we need into the courgette::PEInfo
// structure.
//
bool PEInfo::ParseHeader() {
if (length_ < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/)
return Bad("Too small");
// Have 'MZ' magic for a DOS header?
if (start_[0] != 'M' || start_[1] != 'Z')
return Bad("Not MZ");
// offset from DOS header to PE header is stored in DOS header.
uint32 offset = ReadU32(start_, kOffsetOfFileAddressOfNewExeHeader);
const uint8* const pe_header = start_ + offset;
const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader;
if (pe_header <= start_ || pe_header >= end_ - kMinPEHeaderSize)
return Bad("Bad offset to PE header");
if (offset % 8 != 0)
return Bad("Misaligned PE header");
// The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
// See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
//
// The first field of the IMAGE_NT_HEADERS is the signature.
if (!(pe_header[0] == 'P' &&
pe_header[1] == 'E' &&
pe_header[2] == 0 &&
pe_header[3] == 0))
return Bad("no PE signature");
// The second field of the IMAGE_NT_HEADERS is the COFF header.
// The COFF header is also called an IMAGE_FILE_HEADER
// http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
const uint8* const coff_header = pe_header + 4;
machine_type_ = ReadU16(coff_header, 0);
number_of_sections_ = ReadU16(coff_header, 2);
size_of_optional_header_ = ReadU16(coff_header, 16);
// The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
const uint8* const optional_header = coff_header + kSizeOfCoffHeader;
optional_header_ = optional_header;
if (optional_header + size_of_optional_header_ >= end_)
return Bad("optional header past end of file");
// Check we can read the magic.
if (size_of_optional_header_ < 2)
return Bad("optional header no magic");
uint16 magic = ReadU16(optional_header, 0);
if (magic == kImageNtOptionalHdr32Magic) {
is_PE32_plus_ = false;
offset_of_data_directories_ =
kOffsetOfDataDirectoryFromImageOptionalHeader32;
} else if (magic == kImageNtOptionalHdr64Magic) {
is_PE32_plus_ = true;
offset_of_data_directories_ =
kOffsetOfDataDirectoryFromImageOptionalHeader64;
} else {
return Bad("unrecognized magic");
}
// Check that we can read the rest of the the fixed fields. Data directories
// directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
if (size_of_optional_header_ < offset_of_data_directories_)
return Bad("optional header too short");
// The optional header is either an IMAGE_OPTIONAL_HEADER32 or
// IMAGE_OPTIONAL_HEADER64
// http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
//
// Copy the fields we care about.
size_of_code_ = ReadU32(optional_header, 4);
size_of_initialized_data_ = ReadU32(optional_header, 8);
size_of_uninitialized_data_ = ReadU32(optional_header, 12);
base_of_code_ = ReadU32(optional_header, 20);
if (is_PE32_plus_) {
base_of_data_ = 0;
image_base_ = ReadU64(optional_header, 24);
} else {
base_of_data_ = ReadU32(optional_header, 24);
image_base_ = ReadU32(optional_header, 28);
}
size_of_image_ = ReadU32(optional_header, 56);
number_of_data_directories_ =
ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92));
if (size_of_code_ >= length_ ||
size_of_initialized_data_ >= length_ ||
size_of_code_ + size_of_initialized_data_ >= length_) {
// This validation fires on some perfectly fine executables.
// return Bad("code or initialized data too big");
}
// TODO(sra): we can probably get rid of most of the data directories.
bool b = true;
// 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
// for correctness and it compiles smaller this way.
b &= ReadDataDirectory(0, &export_table_);
b &= ReadDataDirectory(1, &import_table_);
b &= ReadDataDirectory(2, &resource_table_);
b &= ReadDataDirectory(3, &exception_table_);
b &= ReadDataDirectory(5, &base_relocation_table_);
b &= ReadDataDirectory(11, &bound_import_table_);
b &= ReadDataDirectory(12, &import_address_table_);
b &= ReadDataDirectory(13, &delay_import_descriptor_);
b &= ReadDataDirectory(14, &clr_runtime_header_);
if (!b) {
return Bad("malformed data directory");
}
// Sections follow the optional header.
sections_ =
reinterpret_cast<const Section*>(optional_header +
size_of_optional_header_);
file_length_ = 0;
for (int i = 0; i < number_of_sections_; ++i) {
const Section* section = §ions_[i];
// TODO(sra): consider using the 'characteristics' field of the section
// header to see if the section contains instructions.
if (memcmp(section->name, ".text", 6) == 0)
has_text_section_ = true;
uint32 section_end =
section->file_offset_of_raw_data + section->size_of_raw_data;
if (section_end > file_length_)
file_length_ = section_end;
}
failure_reason_ = NULL;
return true;
}
bool PEInfo::ReadDataDirectory(int index, ImageDataDirectory* directory) {
if (index < number_of_data_directories_) {
size_t offset = index * 8 + offset_of_data_directories_;
if (offset >= size_of_optional_header_)
return Bad("number of data directories inconsistent");
const uint8* data_directory = optional_header_ + offset;
if (data_directory < start_ || data_directory + 8 >= end_)
return Bad("data directory outside image");
RVA rva = ReadU32(data_directory, 0);
size_t size = ReadU32(data_directory, 4);
if (size > size_of_image_)
return Bad("data directory size too big");
// TODO(sra): validate RVA.
directory->address_ = rva;
directory->size_ = static_cast<uint32>(size);
return true;
} else {
directory->address_ = 0;
directory->size_ = 0;
return true;
}
}
bool PEInfo::Bad(const char* reason) {
failure_reason_ = reason;
return false;
}
////////////////////////////////////////////////////////////////////////////////
bool PEInfo::ParseRelocs(std::vector<RVA> *relocs) {
relocs->clear();
size_t relocs_size = base_relocation_table_.size_;
if (relocs_size == 0)
return true;
// The format of the base relocation table is a sequence of variable sized
// IMAGE_BASE_RELOCATION blocks. Search for
// "The format of the base relocation data is somewhat quirky"
// at http://msdn.microsoft.com/en-us/library/ms809762.aspx
const uint8* start = RVAToPointer(base_relocation_table_.address_);
const uint8* end = start + relocs_size;
// Make sure entire base relocation table is within the buffer.
if (start < start_ ||
start >= end_ ||
end <= start_ ||
end > end_) {
return Bad(".relocs outside image");
}
const uint8* block = start;
// Walk the variable sized blocks.
while (block + 8 < end) {
RVA page_rva = ReadU32(block, 0);
uint32 size = ReadU32(block, 4);
if (size < 8 || // Size includes header ...
size % 4 != 0) // ... and is word aligned.
return Bad("unreasonable relocs block");
const uint8* end_entries = block + size;
if (end_entries <= block || end_entries <= start_ || end_entries > end_)
return Bad(".relocs block outside image");
// Walk through the two-byte entries.
for (const uint8* p = block + 8; p < end_entries; p += 2) {
uint16 entry = ReadU16(p, 0);
int type = entry >> 12;
int offset = entry & 0xFFF;
RVA rva = page_rva + offset;
if (type == 3) { // IMAGE_REL_BASED_HIGHLOW
relocs->push_back(rva);
} else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE
// Ignore, used as padding.
} else {
// Does not occur in Windows x86 executables.
return Bad("unknown type of reloc");
}
}
block += size;
}
std::sort(relocs->begin(), relocs->end());
return true;
}
} // namespace courgette
|