1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/encryptor.h"
#include <string>
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_number_conversions.h"
#include "crypto/symmetric_key.h"
#include "testing/gtest/include/gtest/gtest.h"
TEST(EncryptorTest, EncryptDecrypt) {
scoped_ptr<crypto::SymmetricKey> key(
crypto::SymmetricKey::DeriveKeyFromPassword(
crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256));
EXPECT_TRUE(key.get());
crypto::Encryptor encryptor;
// The IV must be exactly as long as the cipher block size.
std::string iv("the iv: 16 bytes");
EXPECT_EQ(16U, iv.size());
EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv));
std::string plaintext("this is the plaintext");
std::string ciphertext;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
EXPECT_LT(0U, ciphertext.size());
std::string decrypted;
EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
TEST(EncryptorTest, DecryptWrongKey) {
scoped_ptr<crypto::SymmetricKey> key(
crypto::SymmetricKey::DeriveKeyFromPassword(
crypto::SymmetricKey::AES, "password", "saltiest", 1000, 256));
EXPECT_TRUE(key.get());
// A wrong key that can be detected by implementations that validate every
// byte in the padding.
scoped_ptr<crypto::SymmetricKey> wrong_key(
crypto::SymmetricKey::DeriveKeyFromPassword(
crypto::SymmetricKey::AES, "wrongword", "sweetest", 1000, 256));
EXPECT_TRUE(wrong_key.get());
// A wrong key that can't be detected by any implementation. The password
// "wrongword;" would also work.
scoped_ptr<crypto::SymmetricKey> wrong_key2(
crypto::SymmetricKey::DeriveKeyFromPassword(
crypto::SymmetricKey::AES, "wrongword+", "sweetest", 1000, 256));
EXPECT_TRUE(wrong_key2.get());
// A wrong key that can be detected by all implementations.
scoped_ptr<crypto::SymmetricKey> wrong_key3(
crypto::SymmetricKey::DeriveKeyFromPassword(
crypto::SymmetricKey::AES, "wrongwordx", "sweetest", 1000, 256));
EXPECT_TRUE(wrong_key3.get());
crypto::Encryptor encryptor;
// The IV must be exactly as long as the cipher block size.
std::string iv("the iv: 16 bytes");
EXPECT_EQ(16U, iv.size());
EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CBC, iv));
std::string plaintext("this is the plaintext");
std::string ciphertext;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
static const unsigned char expected_ciphertext[] = {
0x7D, 0x67, 0x5B, 0x53, 0xE6, 0xD8, 0x0F, 0x27,
0x74, 0xB1, 0x90, 0xFE, 0x6E, 0x58, 0x4A, 0xA0,
0x0E, 0x35, 0xE3, 0x01, 0xC0, 0xFE, 0x9A, 0xD8,
0x48, 0x1D, 0x42, 0xB0, 0xBA, 0x21, 0xB2, 0x0C
};
ASSERT_EQ(arraysize(expected_ciphertext), ciphertext.size());
for (size_t i = 0; i < ciphertext.size(); ++i) {
ASSERT_EQ(expected_ciphertext[i],
static_cast<unsigned char>(ciphertext[i]));
}
std::string decrypted;
// This wrong key causes the last padding byte to be 5, which is a valid
// padding length, and the second to last padding byte to be 137, which is
// invalid. If an implementation simply uses the last padding byte to
// determine the padding length without checking every padding byte,
// Encryptor::Decrypt() will still return true. This is the case for NSS
// (crbug.com/124434).
#if !defined(USE_NSS) && !defined(OS_WIN) && !defined(OS_MACOSX)
crypto::Encryptor decryptor;
EXPECT_TRUE(decryptor.Init(wrong_key.get(), crypto::Encryptor::CBC, iv));
EXPECT_FALSE(decryptor.Decrypt(ciphertext, &decrypted));
#endif
// This demonstrates that not all wrong keys can be detected by padding
// error. This wrong key causes the last padding byte to be 1, which is
// a valid padding block of length 1.
crypto::Encryptor decryptor2;
EXPECT_TRUE(decryptor2.Init(wrong_key2.get(), crypto::Encryptor::CBC, iv));
EXPECT_TRUE(decryptor2.Decrypt(ciphertext, &decrypted));
// This wrong key causes the last padding byte to be 253, which should be
// rejected by all implementations.
crypto::Encryptor decryptor3;
EXPECT_TRUE(decryptor3.Init(wrong_key3.get(), crypto::Encryptor::CBC, iv));
EXPECT_FALSE(decryptor3.Decrypt(ciphertext, &decrypted));
}
namespace {
// From NIST SP 800-38a test cast:
// - F.5.1 CTR-AES128.Encrypt
// - F.5.6 CTR-AES256.Encrypt
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
const unsigned char kAES128CTRKey[] = {
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
};
const unsigned char kAES256CTRKey[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4
};
const unsigned char kAESCTRInitCounter[] = {
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
const unsigned char kAESCTRPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10
};
const unsigned char kAES128CTRCiphertext[] = {
// Block #1
0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26,
0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,
// Block #2
0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff,
0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,
// Block #3
0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e,
0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,
// Block #4
0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1,
0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee
};
const unsigned char kAES256CTRCiphertext[] = {
// Block #1
0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5,
0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,
// Block #2
0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a,
0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,
// Block #3
0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c,
0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,
// Block #4
0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6,
0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6
};
void TestAESCTREncrypt(
const unsigned char* key, size_t key_size,
const unsigned char* init_counter, size_t init_counter_size,
const unsigned char* plaintext, size_t plaintext_size,
const unsigned char* ciphertext, size_t ciphertext_size) {
std::string key_str(reinterpret_cast<const char*>(key), key_size);
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key_str));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, ""));
base::StringPiece init_counter_str(
reinterpret_cast<const char*>(init_counter), init_counter_size);
base::StringPiece plaintext_str(
reinterpret_cast<const char*>(plaintext), plaintext_size);
EXPECT_TRUE(encryptor.SetCounter(init_counter_str));
std::string encrypted;
EXPECT_TRUE(encryptor.Encrypt(plaintext_str, &encrypted));
EXPECT_EQ(ciphertext_size, encrypted.size());
EXPECT_EQ(0, memcmp(encrypted.data(), ciphertext, encrypted.size()));
std::string decrypted;
EXPECT_TRUE(encryptor.SetCounter(init_counter_str));
EXPECT_TRUE(encryptor.Decrypt(encrypted, &decrypted));
EXPECT_EQ(plaintext_str, decrypted);
}
void TestAESCTRMultipleDecrypt(
const unsigned char* key, size_t key_size,
const unsigned char* init_counter, size_t init_counter_size,
const unsigned char* plaintext, size_t plaintext_size,
const unsigned char* ciphertext, size_t ciphertext_size) {
std::string key_str(reinterpret_cast<const char*>(key), key_size);
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key_str));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CTR, ""));
// Counter is set only once.
EXPECT_TRUE(encryptor.SetCounter(base::StringPiece(
reinterpret_cast<const char*>(init_counter), init_counter_size)));
std::string ciphertext_str(reinterpret_cast<const char*>(ciphertext),
ciphertext_size);
int kTestDecryptSizes[] = { 32, 16, 8 };
int offset = 0;
for (size_t i = 0; i < arraysize(kTestDecryptSizes); ++i) {
std::string decrypted;
size_t len = kTestDecryptSizes[i];
EXPECT_TRUE(
encryptor.Decrypt(ciphertext_str.substr(offset, len), &decrypted));
EXPECT_EQ(len, decrypted.size());
EXPECT_EQ(0, memcmp(decrypted.data(), plaintext + offset, len));
offset += len;
}
}
} // namespace
TEST(EncryptorTest, EncryptAES128CTR) {
TestAESCTREncrypt(
kAES128CTRKey, arraysize(kAES128CTRKey),
kAESCTRInitCounter, arraysize(kAESCTRInitCounter),
kAESCTRPlaintext, arraysize(kAESCTRPlaintext),
kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext));
}
TEST(EncryptorTest, EncryptAES256CTR) {
TestAESCTREncrypt(
kAES256CTRKey, arraysize(kAES256CTRKey),
kAESCTRInitCounter, arraysize(kAESCTRInitCounter),
kAESCTRPlaintext, arraysize(kAESCTRPlaintext),
kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext));
}
TEST(EncryptorTest, EncryptAES128CTR_MultipleDecrypt) {
TestAESCTRMultipleDecrypt(
kAES128CTRKey, arraysize(kAES128CTRKey),
kAESCTRInitCounter, arraysize(kAESCTRInitCounter),
kAESCTRPlaintext, arraysize(kAESCTRPlaintext),
kAES128CTRCiphertext, arraysize(kAES128CTRCiphertext));
}
TEST(EncryptorTest, EncryptAES256CTR_MultipleDecrypt) {
TestAESCTRMultipleDecrypt(
kAES256CTRKey, arraysize(kAES256CTRKey),
kAESCTRInitCounter, arraysize(kAESCTRInitCounter),
kAESCTRPlaintext, arraysize(kAESCTRPlaintext),
kAES256CTRCiphertext, arraysize(kAES256CTRCiphertext));
}
TEST(EncryptorTest, EncryptDecryptCTR) {
scoped_ptr<crypto::SymmetricKey> key(
crypto::SymmetricKey::GenerateRandomKey(crypto::SymmetricKey::AES, 128));
EXPECT_TRUE(key.get());
const std::string kInitialCounter = "0000000000000000";
crypto::Encryptor encryptor;
EXPECT_TRUE(encryptor.Init(key.get(), crypto::Encryptor::CTR, ""));
EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));
std::string plaintext("normal plaintext of random length");
std::string ciphertext;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
EXPECT_LT(0U, ciphertext.size());
std::string decrypted;
EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));
EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
plaintext = "0123456789012345";
EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
EXPECT_LT(0U, ciphertext.size());
EXPECT_TRUE(encryptor.SetCounter(kInitialCounter));
EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
TEST(EncryptorTest, CTRCounter) {
const int kCounterSize = 16;
const unsigned char kTest1[] =
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned char buf[16];
// Increment 10 times.
crypto::Encryptor::Counter counter1(
std::string(reinterpret_cast<const char*>(kTest1), kCounterSize));
for (int i = 0; i < 10; ++i)
counter1.Increment();
counter1.Write(buf);
EXPECT_EQ(0, memcmp(buf, kTest1, 15));
EXPECT_TRUE(buf[15] == 10);
// Check corner cases.
const unsigned char kTest2[] = {
0, 0, 0, 0, 0, 0, 0, 0,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char kExpect2[] =
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0};
crypto::Encryptor::Counter counter2(
std::string(reinterpret_cast<const char*>(kTest2), kCounterSize));
counter2.Increment();
counter2.Write(buf);
EXPECT_EQ(0, memcmp(buf, kExpect2, kCounterSize));
const unsigned char kTest3[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
const unsigned char kExpect3[] =
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
crypto::Encryptor::Counter counter3(
std::string(reinterpret_cast<const char*>(kTest3), kCounterSize));
counter3.Increment();
counter3.Write(buf);
EXPECT_EQ(0, memcmp(buf, kExpect3, kCounterSize));
}
// TODO(wtc): add more known-answer tests. Test vectors are available from
// http://www.ietf.org/rfc/rfc3602
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
// http://gladman.plushost.co.uk/oldsite/AES/index.php
// http://csrc.nist.gov/groups/STM/cavp/documents/aes/KAT_AES.zip
// NIST SP 800-38A test vector F.2.5 CBC-AES256.Encrypt.
TEST(EncryptorTest, EncryptAES256CBC) {
// From NIST SP 800-38a test cast F.2.5 CBC-AES256.Encrypt.
static const unsigned char kRawKey[] = {
0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4
};
static const unsigned char kRawIv[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
static const unsigned char kRawPlaintext[] = {
// Block #1
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
// Block #2
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
// Block #3
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
// Block #4
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10,
};
static const unsigned char kRawCiphertext[] = {
// Block #1
0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba,
0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,
// Block #2
0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d,
0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,
// Block #3
0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf,
0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,
// Block #4
0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc,
0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b,
// PKCS #5 padding, encrypted.
0x3f, 0x46, 0x17, 0x96, 0xd6, 0xb0, 0xd6, 0xb2,
0xe0, 0xc2, 0xa7, 0x2b, 0x4d, 0x80, 0xe6, 0x44
};
std::string key(reinterpret_cast<const char*>(kRawKey), sizeof(kRawKey));
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
// The IV must be exactly as long a the cipher block size.
std::string iv(reinterpret_cast<const char*>(kRawIv), sizeof(kRawIv));
EXPECT_EQ(16U, iv.size());
EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
std::string plaintext(reinterpret_cast<const char*>(kRawPlaintext),
sizeof(kRawPlaintext));
std::string ciphertext;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
EXPECT_EQ(sizeof(kRawCiphertext), ciphertext.size());
EXPECT_EQ(0, memcmp(ciphertext.data(), kRawCiphertext, ciphertext.size()));
std::string decrypted;
EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
// Expected output derived from the NSS implementation.
TEST(EncryptorTest, EncryptAES128CBCRegression) {
std::string key = "128=SixteenBytes";
std::string iv = "Sweet Sixteen IV";
std::string plaintext = "Plain text with a g-clef U+1D11E \360\235\204\236";
std::string expected_ciphertext_hex =
"D4A67A0BA33C30F207344D81D1E944BBE65587C3D7D9939A"
"C070C62B9C15A3EA312EA4AD1BC7929F4D3C16B03AD5ADA8";
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
// The IV must be exactly as long a the cipher block size.
EXPECT_EQ(16U, iv.size());
EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
std::string ciphertext;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(),
ciphertext.size()));
std::string decrypted;
EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
// Expected output derived from the NSS implementation.
TEST(EncryptorTest, EncryptAES192CBCRegression) {
std::string key = "192bitsIsTwentyFourByte!";
std::string iv = "Sweet Sixteen IV";
std::string plaintext = "Small text";
std::string expected_ciphertext_hex = "78DE5D7C2714FC5C61346C5416F6C89A";
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
// The IV must be exactly as long a the cipher block size.
EXPECT_EQ(16U, iv.size());
EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
std::string ciphertext;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(),
ciphertext.size()));
std::string decrypted;
EXPECT_TRUE(encryptor.Decrypt(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
// Not all platforms allow import/generation of symmetric keys with an
// unsupported size.
#if !defined(USE_NSS) && !defined(OS_WIN) && !defined(OS_MACOSX)
TEST(EncryptorTest, UnsupportedKeySize) {
std::string key = "7 = bad";
std::string iv = "Sweet Sixteen IV";
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
// The IV must be exactly as long a the cipher block size.
EXPECT_EQ(16U, iv.size());
EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
}
#endif // unsupported platforms.
TEST(EncryptorTest, UnsupportedIV) {
std::string key = "128=SixteenBytes";
std::string iv = "OnlyForteen :(";
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
EXPECT_FALSE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
}
TEST(EncryptorTest, EmptyEncrypt) {
std::string key = "128=SixteenBytes";
std::string iv = "Sweet Sixteen IV";
std::string plaintext;
std::string expected_ciphertext_hex = "8518B8878D34E7185E300D0FCC426396";
scoped_ptr<crypto::SymmetricKey> sym_key(crypto::SymmetricKey::Import(
crypto::SymmetricKey::AES, key));
ASSERT_TRUE(sym_key.get());
crypto::Encryptor encryptor;
// The IV must be exactly as long a the cipher block size.
EXPECT_EQ(16U, iv.size());
EXPECT_TRUE(encryptor.Init(sym_key.get(), crypto::Encryptor::CBC, iv));
std::string ciphertext;
EXPECT_TRUE(encryptor.Encrypt(plaintext, &ciphertext));
EXPECT_EQ(expected_ciphertext_hex, base::HexEncode(ciphertext.data(),
ciphertext.size()));
}
|