summaryrefslogtreecommitdiffstats
path: root/crypto/openpgp_symmetric_encryption.cc
blob: 3f37d4c2db1a81d1eb252738e1275b8c2b02d4c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crypto/openpgp_symmetric_encryption.h"

#include <stdlib.h>

#include <sechash.h>
#include <cryptohi.h>

#include <vector>

#include "base/logging.h"
#include "base/rand_util.h"
#include "crypto/scoped_nss_types.h"
#include "crypto/nss_util.h"

namespace crypto {

namespace {

// Reader wraps a StringPiece and provides methods to read several datatypes
// while advancing the StringPiece.
class Reader {
 public:
  Reader(base::StringPiece input)
      : data_(input) {
  }

  bool U8(uint8* out) {
    if (data_.size() < 1)
      return false;
    *out = static_cast<uint8>(data_[0]);
    data_.remove_prefix(1);
    return true;
  }

  bool U32(uint32* out) {
    if (data_.size() < 4)
      return false;
    *out = static_cast<uint32>(data_[0]) << 24 |
           static_cast<uint32>(data_[1]) << 16 |
           static_cast<uint32>(data_[2]) << 8 |
           static_cast<uint32>(data_[3]);
    data_.remove_prefix(4);
    return true;
  }

  // Prefix sets |*out| to the first |n| bytes of the StringPiece and advances
  // the StringPiece by |n|.
  bool Prefix(size_t n, base::StringPiece *out) {
    if (data_.size() < n)
      return false;
    *out = base::StringPiece(data_.data(), n);
    data_.remove_prefix(n);
    return true;
  }

  // Remainder returns the remainer of the StringPiece and advances it to the
  // end.
  base::StringPiece Remainder() {
    base::StringPiece ret = data_;
    data_ = base::StringPiece();
    return ret;
  }

  typedef base::StringPiece Position;

  Position tell() const {
    return data_;
  }

  void Seek(Position p) {
    data_ = p;
  }

  bool Skip(size_t n) {
    if (data_.size() < n)
      return false;
    data_.remove_prefix(n);
    return true;
  }

  bool empty() const {
    return data_.empty();
  }

  size_t size() const {
    return data_.size();
  }

 private:
  base::StringPiece data_;
};

// SaltedIteratedS2K implements the salted and iterated string-to-key
// convertion. See RFC 4880, section 3.7.1.3.
void SaltedIteratedS2K(unsigned cipher_key_length,
                       HASH_HashType hash_function,
                       base::StringPiece passphrase,
                       base::StringPiece salt,
                       unsigned count,
                       uint8 *out_key) {
  const std::string combined = salt.as_string() + passphrase.as_string();
  const size_t combined_len = combined.size();

  unsigned done = 0;
  uint8 zero[1] = {0};

  HASHContext* hash_context = HASH_Create(hash_function);

  for (unsigned i = 0; done < cipher_key_length; i++) {
    HASH_Begin(hash_context);

    for (unsigned j = 0; j < i; j++)
      HASH_Update(hash_context, zero, sizeof(zero));

    unsigned written = 0;
    while (written < count) {
      if (written + combined_len > count) {
        unsigned todo = count - written;
        HASH_Update(hash_context,
                     reinterpret_cast<const uint8*>(combined.data()),
                     todo);
        written = count;
      } else {
        HASH_Update(hash_context,
                     reinterpret_cast<const uint8*>(combined.data()),
                     combined_len);
        written += combined_len;
      }
    }

    unsigned num_hash_bytes;
    uint8 digest[HASH_LENGTH_MAX];
    HASH_End(hash_context, digest, &num_hash_bytes, sizeof(digest));

    unsigned todo = cipher_key_length - done;
    if (todo > num_hash_bytes)
      todo = num_hash_bytes;
    memcpy(out_key + done, digest, todo);
    done += todo;
  }

  HASH_Destroy(hash_context);
}

// CreateAESContext sets up |out_key| to be an AES context, with the given key,
// in ECB mode and with no IV.
bool CreateAESContext(const uint8* key, unsigned key_len,
                      ScopedPK11Context* out_decryption_context) {
  ScopedPK11Slot slot(PK11_GetBestSlot(CKM_AES_ECB, NULL));
  if (!slot.get())
    return false;
  SECItem key_item;
  key_item.type = siBuffer;
  key_item.data = const_cast<uint8*>(key);
  key_item.len = key_len;
  ScopedPK11SymKey pk11_key(PK11_ImportSymKey(
      slot.get(), CKM_AES_ECB, PK11_OriginUnwrap, CKA_ENCRYPT, &key_item,
      NULL));
  if (!pk11_key.get())
    return false;
  ScopedSECItem iv_param(PK11_ParamFromIV(CKM_AES_ECB, NULL));
  out_decryption_context->reset(
      PK11_CreateContextBySymKey(CKM_AES_ECB, CKA_ENCRYPT, pk11_key.get(),
                                 iv_param.get()));
  return out_decryption_context->get() != NULL;
}


// These constants are the tag numbers for the various packet types that we
// use.
static const unsigned kSymmetricKeyEncryptedTag = 3;
static const unsigned kSymmetricallyEncryptedTag = 18;
static const unsigned kCompressedTag = 8;
static const unsigned kLiteralDataTag = 11;

class Decrypter {
 public:
  ~Decrypter() {
    for (std::vector<void*>::iterator
         i = arena_.begin(); i != arena_.end(); i++) {
      free(*i);
    }
    arena_.clear();
  }

  OpenPGPSymmetricEncrytion::Result Decrypt(base::StringPiece in,
                                            base::StringPiece passphrase,
                                            base::StringPiece *out_contents) {
    Reader reader(in);
    unsigned tag;
    base::StringPiece contents;
    ScopedPK11Context decryption_context;

    if (!ParsePacket(&reader, &tag, &contents))
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;
    if (tag != kSymmetricKeyEncryptedTag)
      return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED;
    Reader inner(contents);
    OpenPGPSymmetricEncrytion::Result result =
      ParseSymmetricKeyEncrypted(&inner, passphrase, &decryption_context);
    if (result != OpenPGPSymmetricEncrytion::OK)
      return result;

    if (!ParsePacket(&reader, &tag, &contents))
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;
    if (tag != kSymmetricallyEncryptedTag)
      return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED;
    if (!reader.empty())
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;
    inner = Reader(contents);
    if (!ParseSymmetricallyEncrypted(&inner, &decryption_context, &contents))
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;

    reader = Reader(contents);
    if (!ParsePacket(&reader, &tag, &contents))
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;
    if (tag == kCompressedTag)
      return OpenPGPSymmetricEncrytion::COMPRESSED;
    if (tag != kLiteralDataTag)
      return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED;
    inner = Reader(contents);
    if (!ParseLiteralData(&inner, out_contents))
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;

    return OpenPGPSymmetricEncrytion::OK;
  }

 private:
  // ParsePacket parses an OpenPGP packet from reader. See RFC 4880, section
  // 4.2.2.
  bool ParsePacket(Reader *reader,
                   unsigned *out_tag,
                   base::StringPiece *out_contents) {
    uint8 header;
    if (!reader->U8(&header))
      return false;
    if ((header & 0x80) == 0) {
      // Tag byte must have MSB set.
      return false;
    }

    if ((header & 0x40) == 0) {
      // Old format packet.
      *out_tag = (header & 0x3f) >> 2;

      uint8 length_type = header & 3;
      if (length_type == 3) {
        *out_contents = reader->Remainder();
        return true;
      }

      const unsigned length_bytes = 1 << length_type;
      size_t length = 0;
      for (unsigned i = 0; i < length_bytes; i++) {
        uint8 length_byte;
        if (!reader->U8(&length_byte))
          return false;
        length <<= 8;
        length |= length_byte;
      }

      return reader->Prefix(length, out_contents);
    }

    // New format packet.
    *out_tag = header & 0x3f;
    size_t length;
    bool is_partial;
    if (!ParseLength(reader, &length, &is_partial))
      return false;
    if (is_partial)
      return ParseStreamContents(reader, length, out_contents);
    return reader->Prefix(length, out_contents);
  }

  // ParseStreamContents parses all the chunks of a partial length stream from
  // reader. See http://tools.ietf.org/html/rfc4880#section-4.2.2.4
  bool ParseStreamContents(Reader *reader,
                           size_t length,
                           base::StringPiece *out_contents) {
    const Reader::Position beginning_of_stream = reader->tell();
    const size_t first_chunk_length = length;

    // First we parse the stream to find its length.
    if (!reader->Skip(length))
      return false;

    for (;;) {
      size_t chunk_length;
      bool is_partial;

      if (!ParseLength(reader, &chunk_length, &is_partial))
        return false;
      if (length + chunk_length < length)
        return false;
      length += chunk_length;
      if (!reader->Skip(chunk_length))
        return false;
      if (!is_partial)
        break;
    }

    // Now we have the length of the whole stream in |length|.
    char* buf = reinterpret_cast<char*>(malloc(length));
    arena_.push_back(buf);
    size_t j = 0;
    reader->Seek(beginning_of_stream);

    base::StringPiece first_chunk;
    if (!reader->Prefix(first_chunk_length, &first_chunk))
      return false;
    memcpy(buf + j, first_chunk.data(), first_chunk_length);
    j += first_chunk_length;

    // Now we parse the stream again, this time copying into |buf|
    for (;;) {
      size_t chunk_length;
      bool is_partial;

      if (!ParseLength(reader, &chunk_length, &is_partial))
        return false;
      base::StringPiece chunk;
      if (!reader->Prefix(chunk_length, &chunk))
        return false;
      memcpy(buf + j, chunk.data(), chunk_length);
      j += chunk_length;
      if (!is_partial)
        break;
    }

    *out_contents = base::StringPiece(buf, length);
    return true;
  }

  // ParseLength parses an OpenPGP length from reader. See RFC 4880, section
  // 4.2.2.
  bool ParseLength(Reader *reader, size_t *out_length, bool *out_is_prefix) {
    uint8 length_spec;
    if (!reader->U8(&length_spec))
      return false;

    *out_is_prefix = false;
    if (length_spec < 192) {
      *out_length = length_spec;
      return true;
    } else if (length_spec < 224) {
      uint8 next_byte;
      if (!reader->U8(&next_byte))
        return false;

      *out_length = (length_spec - 192) << 8;
      *out_length += next_byte;
      return true;
    } else if (length_spec < 255) {
      *out_length = 1u << (length_spec & 0x1f);
      *out_is_prefix = true;
      return true;
    } else {
      uint32 length32;
      if (!reader->U32(&length32))
        return false;
      *out_length = length32;
      return true;
    }
  }

  // ParseSymmetricKeyEncrypted parses a passphrase protected session key. See
  // RFC 4880, section 5.3.
  OpenPGPSymmetricEncrytion::Result ParseSymmetricKeyEncrypted(
      Reader *reader,
      base::StringPiece passphrase,
      ScopedPK11Context *decryption_context) {
    uint8 version, cipher, s2k_type, hash_func_id;
    if (!reader->U8(&version) || version != 4)
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;

    if (!reader->U8(&cipher) ||
        !reader->U8(&s2k_type) ||
        !reader->U8(&hash_func_id)) {
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;
    }

    uint8 cipher_key_length = OpenPGPCipherIdToKeyLength(cipher);
    if (cipher_key_length == 0)
      return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER;

    HASH_HashType hash_function;
    switch (hash_func_id) {
    case 2:  // SHA-1
      hash_function = HASH_AlgSHA1;
      break;
    case 8:  // SHA-256
      hash_function = HASH_AlgSHA256;
      break;
    default:
      return OpenPGPSymmetricEncrytion::UNKNOWN_HASH;
    }

    // This chunk of code parses the S2K specifier. See RFC 4880, section 3.7.1.
    base::StringPiece salt;
    uint8 key[32];
    uint8 count_spec;
    switch (s2k_type) {
    case 1:
      if (!reader->Prefix(8, &salt))
        return OpenPGPSymmetricEncrytion::PARSE_ERROR;
      // Fall through.
    case 0:
      SaltedIteratedS2K(cipher_key_length, hash_function, passphrase, salt,
                        passphrase.size() + salt.size(), key);
      break;
    case 3:
      if (!reader->Prefix(8, &salt) ||
          !reader->U8(&count_spec)) {
        return OpenPGPSymmetricEncrytion::PARSE_ERROR;
      }
      SaltedIteratedS2K(
          cipher_key_length, hash_function, passphrase, salt,
          static_cast<unsigned>(
            16 + (count_spec&15)) << ((count_spec >> 4) + 6), key);
      break;
    default:
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;
    }

    if (!CreateAESContext(key, cipher_key_length, decryption_context))
      return OpenPGPSymmetricEncrytion::INTERNAL_ERROR;

    if (reader->empty()) {
      // The resulting key is used directly.
      return OpenPGPSymmetricEncrytion::OK;
    }

    // The S2K derived key encrypts another key that follows:
    base::StringPiece encrypted_key = reader->Remainder();
    if (encrypted_key.size() < 1)
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;

    uint8* plaintext_key = reinterpret_cast<uint8*>(
        malloc(encrypted_key.size()));
    arena_.push_back(plaintext_key);

    CFBDecrypt(encrypted_key, decryption_context, plaintext_key);

    cipher_key_length = OpenPGPCipherIdToKeyLength(plaintext_key[0]);
    if (cipher_key_length == 0)
      return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER;
    if (encrypted_key.size() != 1u + cipher_key_length)
      return OpenPGPSymmetricEncrytion::PARSE_ERROR;
    if (!CreateAESContext(plaintext_key + 1, cipher_key_length,
                          decryption_context)) {
      return OpenPGPSymmetricEncrytion::INTERNAL_ERROR;
    }
    return OpenPGPSymmetricEncrytion::OK;
  }

  // CFBDecrypt decrypts the cipher-feedback encrypted data in |in| to |out|
  // using |decryption_context| and assumes an IV of all zeros.
  void CFBDecrypt(base::StringPiece in, ScopedPK11Context* decryption_context,
                  uint8* out) {
    // We need this for PK11_CipherOp to write to, but we never check it as we
    // work in ECB mode, one block at a time.
    int out_len;

    uint8 mask[AES_BLOCK_SIZE];
    memset(mask, 0, sizeof(mask));

    unsigned used = AES_BLOCK_SIZE;

    for (size_t i = 0; i < in.size(); i++) {
      if (used == AES_BLOCK_SIZE) {
        PK11_CipherOp(decryption_context->get(), mask, &out_len, sizeof(mask),
                      mask, AES_BLOCK_SIZE);
        used = 0;
      }

      uint8 t = in[i];
      out[i] = t ^ mask[used];
      mask[used] = t;
      used++;
    }
  }

  // OpenPGPCipherIdToKeyLength converts an OpenPGP cipher id (see RFC 4880,
  // section 9.2) to the key length of that cipher. It returns 0 on error.
  unsigned OpenPGPCipherIdToKeyLength(uint8 cipher) {
    switch (cipher) {
    case 7:  // AES-128
      return 16;
    case 8:  // AES-192
      return 24;
    case 9:  // AES-256
      return 32;
    default:
      return 0;
    }
  }

  // ParseSymmetricallyEncrypted parses a Symmetrically Encrypted packet. See
  // RFC 4880, sections 5.7 and 5.13.
  bool ParseSymmetricallyEncrypted(Reader *reader,
                                   ScopedPK11Context *decryption_context,
                                   base::StringPiece *out_plaintext) {
    // We need this for PK11_CipherOp to write to, but we never check it as we
    // work in ECB mode, one block at a time.
    int out_len;

    uint8 version;
    if (!reader->U8(&version) || version != 1)
      return false;

    base::StringPiece prefix_sp;
    if (!reader->Prefix(AES_BLOCK_SIZE + 2, &prefix_sp))
      return false;
    uint8 prefix[AES_BLOCK_SIZE + 2];
    memcpy(prefix, prefix_sp.data(), sizeof(prefix));

    uint8 prefix_copy[AES_BLOCK_SIZE + 2];
    uint8 fre[AES_BLOCK_SIZE];

    memset(prefix_copy, 0, AES_BLOCK_SIZE);
    PK11_CipherOp(decryption_context->get(), fre, &out_len, sizeof(fre),
                  prefix_copy, AES_BLOCK_SIZE);
    for (unsigned i = 0; i < AES_BLOCK_SIZE; i++)
      prefix_copy[i] = fre[i] ^ prefix[i];
    PK11_CipherOp(decryption_context->get(), fre, &out_len, sizeof(fre), prefix,
                  AES_BLOCK_SIZE);
    prefix_copy[AES_BLOCK_SIZE] = prefix[AES_BLOCK_SIZE] ^ fre[0];
    prefix_copy[AES_BLOCK_SIZE + 1] = prefix[AES_BLOCK_SIZE + 1] ^ fre[1];

    if (prefix_copy[AES_BLOCK_SIZE - 2] != prefix_copy[AES_BLOCK_SIZE] ||
        prefix_copy[AES_BLOCK_SIZE - 1] != prefix_copy[AES_BLOCK_SIZE + 1]) {
      return false;
    }

    fre[0] = prefix[AES_BLOCK_SIZE];
    fre[1] = prefix[AES_BLOCK_SIZE + 1];

    unsigned out_used = 2;

    const size_t plaintext_size = reader->size();
    if (plaintext_size < SHA1_LENGTH + 2) {
      // Too small to contain an MDC trailer.
      return false;
    }

    uint8* plaintext = reinterpret_cast<uint8*>(malloc(plaintext_size));
    arena_.push_back(plaintext);

    for (size_t i = 0; i < plaintext_size; i++) {
      uint8 b;
      if (!reader->U8(&b))
        return false;
      if (out_used == AES_BLOCK_SIZE) {
        PK11_CipherOp(decryption_context->get(), fre, &out_len, sizeof(fre),
                      fre, AES_BLOCK_SIZE);
        out_used = 0;
      }

      plaintext[i] = b ^ fre[out_used];
      fre[out_used++] = b;
    }

    // The plaintext should be followed by a Modification Detection Code
    // packet. This packet is specified such that the header is always
    // serialized as exactly these two bytes:
    if (plaintext[plaintext_size - SHA1_LENGTH - 2] != 0xd3 ||
        plaintext[plaintext_size - SHA1_LENGTH - 1] != 0x14) {
      return false;
    }

    HASHContext* hash_context = HASH_Create(HASH_AlgSHA1);
    HASH_Begin(hash_context);
    HASH_Update(hash_context, prefix_copy, sizeof(prefix_copy));
    HASH_Update(hash_context, plaintext, plaintext_size - SHA1_LENGTH);
    uint8 digest[SHA1_LENGTH];
    unsigned num_hash_bytes;
    HASH_End(hash_context, digest, &num_hash_bytes, sizeof(digest));
    HASH_Destroy(hash_context);

    if (memcmp(digest, &plaintext[plaintext_size - SHA1_LENGTH],
               SHA1_LENGTH) != 0) {
      return false;
    }

    *out_plaintext = base::StringPiece(reinterpret_cast<char*>(plaintext),
                                       plaintext_size - SHA1_LENGTH);
    return true;
  }

  // ParseLiteralData parses a Literal Data packet. See RFC 4880, section 5.9.
  bool ParseLiteralData(Reader *reader, base::StringPiece *out_data) {
    uint8 is_binary, filename_len;
    if (!reader->U8(&is_binary) ||
        !reader->U8(&filename_len) ||
        !reader->Skip(filename_len) ||
        !reader->Skip(sizeof(uint32) /* mtime */)) {
      return false;
    }

    *out_data = reader->Remainder();
    return true;
  }

  // arena_ contains malloced pointers that are used as temporary space during
  // the decryption.
  std::vector<void*> arena_;
};

class Encrypter {
 public:
  // ByteString is used throughout in order to avoid signedness issues with a
  // std::string.
  typedef std::basic_string<uint8> ByteString;

  static ByteString Encrypt(base::StringPiece plaintext,
                            base::StringPiece passphrase) {
    ByteString key;
    ByteString ske = SerializeSymmetricKeyEncrypted(passphrase, &key);

    ByteString literal_data = SerializeLiteralData(plaintext);
    ByteString se = SerializeSymmetricallyEncrypted(literal_data, key);
    return ske + se;
  }

 private:
  // MakePacket returns an OpenPGP packet tagged as type |tag|. It always uses
  // new-format headers. See RFC 4880, section 4.2.
  static ByteString MakePacket(unsigned tag, const ByteString& contents) {
    ByteString header;
    header.push_back(0x80 | 0x40 | tag);

    if (contents.size() < 192) {
      header.push_back(contents.size());
    } else if (contents.size() < 8384) {
      size_t length = contents.size();
      length -= 192;
      header.push_back(192 + (length >> 8));
      header.push_back(length & 0xff);
    } else {
      size_t length = contents.size();
      header.push_back(255);
      header.push_back(length >> 24);
      header.push_back(length >> 16);
      header.push_back(length >> 8);
      header.push_back(length);
    }

    return header + contents;
  }

  // SerializeLiteralData returns a Literal Data packet containing |contents|
  // as binary data with no filename nor mtime specified. See RFC 4880, section
  // 5.9.
  static ByteString SerializeLiteralData(base::StringPiece contents) {
    ByteString literal_data;
    literal_data.push_back(0x74);  // text mode
    literal_data.push_back(0x00);  // no filename
    literal_data.push_back(0x00);  // zero mtime
    literal_data.push_back(0x00);
    literal_data.push_back(0x00);
    literal_data.push_back(0x00);
    literal_data += ByteString(reinterpret_cast<const uint8*>(contents.data()),
                               contents.size());
    return MakePacket(kLiteralDataTag, literal_data);
  }

  // SerializeSymmetricKeyEncrypted generates a random AES-128 key from
  // |passphrase|, sets |out_key| to it and returns a Symmetric Key Encrypted
  // packet. See RFC 4880, section 5.3.
  static ByteString SerializeSymmetricKeyEncrypted(base::StringPiece passphrase,
                                                   ByteString *out_key) {
    ByteString ske;
    ske.push_back(4);  // version 4
    ske.push_back(7);  // AES-128
    ske.push_back(3);  // iterated and salted S2K
    ske.push_back(2);  // SHA-1

    uint64 salt64 = base::RandUint64();
    ByteString salt(sizeof(salt64), 0);

    // It's a random value, so endianness doesn't matter.
    ske += ByteString(reinterpret_cast<uint8*>(&salt64), sizeof(salt64));
    ske.push_back(96);  // iteration count of 65536

    uint8 key[16];
    SaltedIteratedS2K(
        sizeof(key), HASH_AlgSHA1, passphrase,
        base::StringPiece(reinterpret_cast<char*>(&salt64), sizeof(salt64)),
        65536, key);
    *out_key = ByteString(key, sizeof(key));
    return MakePacket(kSymmetricKeyEncryptedTag, ske);
  }

  // SerializeSymmetricallyEncrypted encrypts |plaintext| with |key| and
  // returns a Symmetrically Encrypted packet containing the ciphertext. See
  // RFC 4880, section 5.7.
  static ByteString SerializeSymmetricallyEncrypted(ByteString plaintext,
                                                    const ByteString& key) {
    // We need this for PK11_CipherOp to write to, but we never check it as we
    // work in ECB mode, one block at a time.
    int out_len;

    ByteString packet;
    packet.push_back(1);  // version 1
    static const unsigned kBlockSize = 16;  // AES block size

    uint8 prefix[kBlockSize + 2], fre[kBlockSize], iv[kBlockSize];
    base::RandBytes(iv, kBlockSize);
    memset(fre, 0, sizeof(fre));

    ScopedPK11Context aes_context;
    CHECK(CreateAESContext(key.data(), key.size(), &aes_context));

    PK11_CipherOp(aes_context.get(), fre, &out_len, sizeof(fre), fre,
                  AES_BLOCK_SIZE);
    for (unsigned i = 0; i < 16; i++)
      prefix[i] = iv[i] ^ fre[i];
    PK11_CipherOp(aes_context.get(), fre, &out_len, sizeof(fre), prefix,
                  AES_BLOCK_SIZE);
    prefix[kBlockSize] = iv[kBlockSize - 2] ^ fre[0];
    prefix[kBlockSize + 1] = iv[kBlockSize - 1] ^ fre[1];

    packet += ByteString(prefix, sizeof(prefix));

    ByteString plaintext_copy = plaintext;
    plaintext_copy.push_back(0xd3);  // MDC packet
    plaintext_copy.push_back(20);  // packet length (20 bytes)

    HASHContext* hash_context = HASH_Create(HASH_AlgSHA1);
    HASH_Begin(hash_context);
    HASH_Update(hash_context, iv, sizeof(iv));
    HASH_Update(hash_context, iv + kBlockSize - 2, 2);
    HASH_Update(hash_context, plaintext_copy.data(), plaintext_copy.size());
    uint8 digest[SHA1_LENGTH];
    unsigned num_hash_bytes;
    HASH_End(hash_context, digest, &num_hash_bytes, sizeof(digest));
    HASH_Destroy(hash_context);

    plaintext_copy += ByteString(digest, sizeof(digest));

    fre[0] = prefix[kBlockSize];
    fre[1] = prefix[kBlockSize+1];
    unsigned out_used = 2;

    for (size_t i = 0; i < plaintext_copy.size(); i++) {
      if (out_used == kBlockSize) {
        PK11_CipherOp(aes_context.get(), fre, &out_len, sizeof(fre), fre,
                      AES_BLOCK_SIZE);
        out_used = 0;
      }

      uint8 c = plaintext_copy[i] ^ fre[out_used];
      fre[out_used++] = c;
      packet.push_back(c);
    }

    return MakePacket(kSymmetricallyEncryptedTag, packet);
  }
};

}  // anonymous namespace

// static
OpenPGPSymmetricEncrytion::Result OpenPGPSymmetricEncrytion::Decrypt(
    base::StringPiece encrypted,
    base::StringPiece passphrase,
    std::string *out) {
  EnsureNSSInit();

  Decrypter decrypter;
  base::StringPiece result;
  Result reader = decrypter.Decrypt(encrypted, passphrase, &result);
  if (reader == OK)
    *out = result.as_string();
  return reader;
}

// static
std::string OpenPGPSymmetricEncrytion::Encrypt(
    base::StringPiece plaintext,
    base::StringPiece passphrase) {
  EnsureNSSInit();

  Encrypter::ByteString b =
      Encrypter::Encrypt(plaintext, passphrase);
  return std::string(reinterpret_cast<const char*>(b.data()), b.size());
}

}  // namespace crypto