summaryrefslogtreecommitdiffstats
path: root/crypto/p224.cc
blob: 575b51f4ce946cf06b4443ddf68cda8667240752 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This is an implementation of the P224 elliptic curve group. It's written to
// be short and simple rather than fast, although it's still constant-time.
//
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.

#include "crypto/p224.h"

#include <string.h>

#include "base/sys_byteorder.h"

namespace {

using base::HostToNet32;
using base::NetToHost32;

// Field element functions.
//
// The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
//
// Field elements are represented by a FieldElement, which is a typedef to an
// array of 8 uint32's. The value of a FieldElement, a, is:
//   a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
//
// Using 28-bit limbs means that there's only 4 bits of headroom, which is less
// than we would really like. But it has the useful feature that we hit 2**224
// exactly, making the reflections during a reduce much nicer.

using crypto::p224::FieldElement;

// Add computes *out = a+b
//
// a[i] + b[i] < 2**32
void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) {
  for (int i = 0; i < 8; i++) {
    (*out)[i] = a[i] + b[i];
  }
}

static const uint32 kTwo31p3 = (1u<<31) + (1u<<3);
static const uint32 kTwo31m3 = (1u<<31) - (1u<<3);
static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3);
// kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can
// subtract smaller amounts without underflow. See the section "Subtraction" in
// [1] for why.
static const FieldElement kZero31ModP = {
  kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3,
  kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3
};

// Subtract computes *out = a-b
//
// a[i], b[i] < 2**30
// out[i] < 2**32
void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) {
  for (int i = 0; i < 8; i++) {
    // See the section on "Subtraction" in [1] for details.
    (*out)[i] = a[i] + kZero31ModP[i] - b[i];
  }
}

static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35);
static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35);
static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19);
// kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section
// "Subtraction" in [1] for why.
static const uint64 kZero63ModP[8] = {
  kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35,
  kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35,
};

static const uint32 kBottom28Bits = 0xfffffff;

// LargeFieldElement also represents an element of the field. The limbs are
// still spaced 28-bits apart and in little-endian order. So the limbs are at
// 0, 28, 56, ..., 392 bits, each 64-bits wide.
typedef uint64 LargeFieldElement[15];

// ReduceLarge converts a LargeFieldElement to a FieldElement.
//
// in[i] < 2**62
void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) {
  LargeFieldElement& in(*inptr);

  for (int i = 0; i < 8; i++) {
    in[i] += kZero63ModP[i];
  }

  // Eliminate the coefficients at 2**224 and greater while maintaining the
  // same value mod p.
  for (int i = 14; i >= 8; i--) {
    in[i-8] -= in[i];  // reflection off the "+1" term of p.
    in[i-5] += (in[i] & 0xffff) << 12;  // part of the "-2**96" reflection.
    in[i-4] += in[i] >> 16;  // the rest of the "-2**96" reflection.
  }
  in[8] = 0;
  // in[0..8] < 2**64

  // As the values become small enough, we start to store them in |out| and use
  // 32-bit operations.
  for (int i = 1; i < 8; i++) {
    in[i+1] += in[i] >> 28;
    (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits);
  }
  // Eliminate the term at 2*224 that we introduced while keeping the same
  // value mod p.
  in[0] -= in[8];  // reflection off the "+1" term of p.
  (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term
  (*out)[4] += static_cast<uint32>(in[8] >> 16);  // rest of "-2**96" term
  // in[0] < 2**64
  // out[3] < 2**29
  // out[4] < 2**29
  // out[1,2,5..7] < 2**28

  (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits);
  (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits);
  (*out)[2] += static_cast<uint32>(in[0] >> 56);
  // out[0] < 2**28
  // out[1..4] < 2**29
  // out[5..7] < 2**28
}

// Mul computes *out = a*b
//
// a[i] < 2**29, b[i] < 2**30 (or vice versa)
// out[i] < 2**29
void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) {
  LargeFieldElement tmp;
  memset(&tmp, 0, sizeof(tmp));

  for (int i = 0; i < 8; i++) {
    for (int j = 0; j < 8; j++) {
      tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]);
    }
  }

  ReduceLarge(out, &tmp);
}

// Square computes *out = a*a
//
// a[i] < 2**29
// out[i] < 2**29
void Square(FieldElement* out, const FieldElement& a) {
  LargeFieldElement tmp;
  memset(&tmp, 0, sizeof(tmp));

  for (int i = 0; i < 8; i++) {
    for (int j = 0; j <= i; j++) {
      uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]);
      if (i == j) {
        tmp[i+j] += r;
      } else {
        tmp[i+j] += r << 1;
      }
    }
  }

  ReduceLarge(out, &tmp);
}

// Reduce reduces the coefficients of in_out to smaller bounds.
//
// On entry: a[i] < 2**31 + 2**30
// On exit: a[i] < 2**29
void Reduce(FieldElement* in_out) {
  FieldElement& a = *in_out;

  for (int i = 0; i < 7; i++) {
    a[i+1] += a[i] >> 28;
    a[i] &= kBottom28Bits;
  }
  uint32 top = a[7] >> 28;
  a[7] &= kBottom28Bits;

  // top < 2**4
  // Constant-time: mask = (top != 0) ? 0xffffffff : 0
  uint32 mask = top;
  mask |= mask >> 2;
  mask |= mask >> 1;
  mask <<= 31;
  mask = static_cast<uint32>(static_cast<int32>(mask) >> 31);

  // Eliminate top while maintaining the same value mod p.
  a[0] -= top;
  a[3] += top << 12;

  // We may have just made a[0] negative but, if we did, then we must
  // have added something to a[3], thus it's > 2**12. Therefore we can
  // carry down to a[0].
  a[3] -= 1 & mask;
  a[2] += mask & ((1<<28) - 1);
  a[1] += mask & ((1<<28) - 1);
  a[0] += mask & (1<<28);
}

// Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e.
// Fermat's little theorem.
void Invert(FieldElement* out, const FieldElement& in) {
  FieldElement f1, f2, f3, f4;

  Square(&f1, in);                        // 2
  Mul(&f1, f1, in);                       // 2**2 - 1
  Square(&f1, f1);                        // 2**3 - 2
  Mul(&f1, f1, in);                       // 2**3 - 1
  Square(&f2, f1);                        // 2**4 - 2
  Square(&f2, f2);                        // 2**5 - 4
  Square(&f2, f2);                        // 2**6 - 8
  Mul(&f1, f1, f2);                       // 2**6 - 1
  Square(&f2, f1);                        // 2**7 - 2
  for (int i = 0; i < 5; i++) {           // 2**12 - 2**6
    Square(&f2, f2);
  }
  Mul(&f2, f2, f1);                       // 2**12 - 1
  Square(&f3, f2);                        // 2**13 - 2
  for (int i = 0; i < 11; i++) {          // 2**24 - 2**12
    Square(&f3, f3);
  }
  Mul(&f2, f3, f2);                       // 2**24 - 1
  Square(&f3, f2);                        // 2**25 - 2
  for (int i = 0; i < 23; i++) {          // 2**48 - 2**24
    Square(&f3, f3);
  }
  Mul(&f3, f3, f2);                       // 2**48 - 1
  Square(&f4, f3);                        // 2**49 - 2
  for (int i = 0; i < 47; i++) {          // 2**96 - 2**48
    Square(&f4, f4);
  }
  Mul(&f3, f3, f4);                       // 2**96 - 1
  Square(&f4, f3);                        // 2**97 - 2
  for (int i = 0; i < 23; i++) {          // 2**120 - 2**24
    Square(&f4, f4);
  }
  Mul(&f2, f4, f2);                       // 2**120 - 1
  for (int i = 0; i < 6; i++) {           // 2**126 - 2**6
    Square(&f2, f2);
  }
  Mul(&f1, f1, f2);                       // 2**126 - 1
  Square(&f1, f1);                        // 2**127 - 2
  Mul(&f1, f1, in);                       // 2**127 - 1
  for (int i = 0; i < 97; i++) {          // 2**224 - 2**97
    Square(&f1, f1);
  }
  Mul(out, f1, f3);                       // 2**224 - 2**96 - 1
}

// Contract converts a FieldElement to its minimal, distinguished form.
//
// On entry, in[i] < 2**29
// On exit, in[i] < 2**28
void Contract(FieldElement* inout) {
  FieldElement& out = *inout;

  // Reduce the coefficients to < 2**28.
  for (int i = 0; i < 7; i++) {
    out[i+1] += out[i] >> 28;
    out[i] &= kBottom28Bits;
  }
  uint32 top = out[7] >> 28;
  out[7] &= kBottom28Bits;

  // Eliminate top while maintaining the same value mod p.
  out[0] -= top;
  out[3] += top << 12;

  // We may just have made out[0] negative. So we carry down. If we made
  // out[0] negative then we know that out[3] is sufficiently positive
  // because we just added to it.
  for (int i = 0; i < 3; i++) {
    uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
    out[i] += (1 << 28) & mask;
    out[i+1] -= 1 & mask;
  }

  // We might have pushed out[3] over 2**28 so we perform another, partial
  // carry chain.
  for (int i = 3; i < 7; i++) {
    out[i+1] += out[i] >> 28;
    out[i] &= kBottom28Bits;
  }
  top = out[7] >> 28;
  out[7] &= kBottom28Bits;

  // Eliminate top while maintaining the same value mod p.
  out[0] -= top;
  out[3] += top << 12;

  // There are two cases to consider for out[3]:
  //   1) The first time that we eliminated top, we didn't push out[3] over
  //      2**28. In this case, the partial carry chain didn't change any values
  //      and top is zero.
  //   2) We did push out[3] over 2**28 the first time that we eliminated top.
  //      The first value of top was in [0..16), therefore, prior to eliminating
  //      the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after
  //      overflowing and being reduced by the second carry chain, out[3] <=
  //      0xf000. Thus it cannot have overflowed when we eliminated top for the
  //      second time.

  // Again, we may just have made out[0] negative, so do the same carry down.
  // As before, if we made out[0] negative then we know that out[3] is
  // sufficiently positive.
  for (int i = 0; i < 3; i++) {
    uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
    out[i] += (1 << 28) & mask;
    out[i+1] -= 1 & mask;
  }

  // The value is < 2**224, but maybe greater than p. In order to reduce to a
  // unique, minimal value we see if the value is >= p and, if so, subtract p.

  // First we build a mask from the top four limbs, which must all be
  // equal to bottom28Bits if the whole value is >= p. If top4AllOnes
  // ends up with any zero bits in the bottom 28 bits, then this wasn't
  // true.
  uint32 top4AllOnes = 0xffffffffu;
  for (int i = 4; i < 8; i++) {
    top4AllOnes &= (out[i] & kBottom28Bits) - 1;
  }
  top4AllOnes |= 0xf0000000;
  // Now we replicate any zero bits to all the bits in top4AllOnes.
  top4AllOnes &= top4AllOnes >> 16;
  top4AllOnes &= top4AllOnes >> 8;
  top4AllOnes &= top4AllOnes >> 4;
  top4AllOnes &= top4AllOnes >> 2;
  top4AllOnes &= top4AllOnes >> 1;
  top4AllOnes =
      static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31);

  // Now we test whether the bottom three limbs are non-zero.
  uint32 bottom3NonZero = out[0] | out[1] | out[2];
  bottom3NonZero |= bottom3NonZero >> 16;
  bottom3NonZero |= bottom3NonZero >> 8;
  bottom3NonZero |= bottom3NonZero >> 4;
  bottom3NonZero |= bottom3NonZero >> 2;
  bottom3NonZero |= bottom3NonZero >> 1;
  bottom3NonZero =
      static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31);

  // Everything depends on the value of out[3].
  //    If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p
  //    If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0,
  //      then the whole value is >= p
  //    If it's < 0xffff000, then the whole value is < p
  uint32 n = out[3] - 0xffff000;
  uint32 out3Equal = n;
  out3Equal |= out3Equal >> 16;
  out3Equal |= out3Equal >> 8;
  out3Equal |= out3Equal >> 4;
  out3Equal |= out3Equal >> 2;
  out3Equal |= out3Equal >> 1;
  out3Equal =
      ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31);

  // If out[3] > 0xffff000 then n's MSB will be zero.
  uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31);

  uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT);
  out[0] -= 1 & mask;
  out[3] -= 0xffff000 & mask;
  out[4] -= 0xfffffff & mask;
  out[5] -= 0xfffffff & mask;
  out[6] -= 0xfffffff & mask;
  out[7] -= 0xfffffff & mask;
}


// Group element functions.
//
// These functions deal with group elements. The group is an elliptic curve
// group with a = -3 defined in FIPS 186-3, section D.2.2.

using crypto::p224::Point;

// kP is the P224 prime.
const FieldElement kP = {
  1, 0, 0, 268431360,
  268435455, 268435455, 268435455, 268435455,
};

// kB is parameter of the elliptic curve.
const FieldElement kB = {
  55967668, 11768882, 265861671, 185302395,
  39211076, 180311059, 84673715, 188764328,
};

// AddJacobian computes *out = a+b where a != b.
void AddJacobian(Point *out,
                 const Point& a,
                 const Point& b) {
  // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
  FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v;

  // Z1Z1 = Z1²
  Square(&z1z1, a.z);

  // Z2Z2 = Z2²
  Square(&z2z2, b.z);

  // U1 = X1*Z2Z2
  Mul(&u1, a.x, z2z2);

  // U2 = X2*Z1Z1
  Mul(&u2, b.x, z1z1);

  // S1 = Y1*Z2*Z2Z2
  Mul(&s1, b.z, z2z2);
  Mul(&s1, a.y, s1);

  // S2 = Y2*Z1*Z1Z1
  Mul(&s2, a.z, z1z1);
  Mul(&s2, b.y, s2);

  // H = U2-U1
  Subtract(&h, u2, u1);
  Reduce(&h);

  // I = (2*H)²
  for (int j = 0; j < 8; j++) {
    i[j] = h[j] << 1;
  }
  Reduce(&i);
  Square(&i, i);

  // J = H*I
  Mul(&j, h, i);
  // r = 2*(S2-S1)
  Subtract(&r, s2, s1);
  Reduce(&r);
  for (int i = 0; i < 8; i++) {
    r[i] <<= 1;
  }
  Reduce(&r);

  // V = U1*I
  Mul(&v, u1, i);

  // Z3 = ((Z1+Z2)²-Z1Z1-Z2Z2)*H
  Add(&z1z1, z1z1, z2z2);
  Add(&z2z2, a.z, b.z);
  Reduce(&z2z2);
  Square(&z2z2, z2z2);
  Subtract(&out->z, z2z2, z1z1);
  Reduce(&out->z);
  Mul(&out->z, out->z, h);

  // X3 = r²-J-2*V
  for (int i = 0; i < 8; i++) {
    z1z1[i] = v[i] << 1;
  }
  Add(&z1z1, j, z1z1);
  Reduce(&z1z1);
  Square(&out->x, r);
  Subtract(&out->x, out->x, z1z1);
  Reduce(&out->x);

  // Y3 = r*(V-X3)-2*S1*J
  for (int i = 0; i < 8; i++) {
    s1[i] <<= 1;
  }
  Mul(&s1, s1, j);
  Subtract(&z1z1, v, out->x);
  Reduce(&z1z1);
  Mul(&z1z1, z1z1, r);
  Subtract(&out->y, z1z1, s1);
  Reduce(&out->y);
}

// DoubleJacobian computes *out = a+a.
void DoubleJacobian(Point* out, const Point& a) {
  // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
  FieldElement delta, gamma, beta, alpha, t;

  Square(&delta, a.z);
  Square(&gamma, a.y);
  Mul(&beta, a.x, gamma);

  // alpha = 3*(X1-delta)*(X1+delta)
  Add(&t, a.x, delta);
  for (int i = 0; i < 8; i++) {
          t[i] += t[i] << 1;
  }
  Reduce(&t);
  Subtract(&alpha, a.x, delta);
  Reduce(&alpha);
  Mul(&alpha, alpha, t);

  // Z3 = (Y1+Z1)²-gamma-delta
  Add(&out->z, a.y, a.z);
  Reduce(&out->z);
  Square(&out->z, out->z);
  Subtract(&out->z, out->z, gamma);
  Reduce(&out->z);
  Subtract(&out->z, out->z, delta);
  Reduce(&out->z);

  // X3 = alpha²-8*beta
  for (int i = 0; i < 8; i++) {
          delta[i] = beta[i] << 3;
  }
  Reduce(&delta);
  Square(&out->x, alpha);
  Subtract(&out->x, out->x, delta);
  Reduce(&out->x);

  // Y3 = alpha*(4*beta-X3)-8*gamma²
  for (int i = 0; i < 8; i++) {
          beta[i] <<= 2;
  }
  Reduce(&beta);
  Subtract(&beta, beta, out->x);
  Reduce(&beta);
  Square(&gamma, gamma);
  for (int i = 0; i < 8; i++) {
          gamma[i] <<= 3;
  }
  Reduce(&gamma);
  Mul(&out->y, alpha, beta);
  Subtract(&out->y, out->y, gamma);
  Reduce(&out->y);
}

// CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of
// 0xffffffff.
void CopyConditional(Point* out,
                     const Point& a,
                     uint32 mask) {
  for (int i = 0; i < 8; i++) {
    out->x[i] ^= mask & (a.x[i] ^ out->x[i]);
    out->y[i] ^= mask & (a.y[i] ^ out->y[i]);
    out->z[i] ^= mask & (a.z[i] ^ out->z[i]);
  }
}

// ScalarMult calculates *out = a*scalar where scalar is a big-endian number of
// length scalar_len and != 0.
void ScalarMult(Point* out, const Point& a,
                const uint8* scalar, size_t scalar_len) {
  memset(out, 0, sizeof(*out));
  Point tmp;

  uint32 first_bit = 0xffffffff;
  for (size_t i = 0; i < scalar_len; i++) {
    for (unsigned int bit_num = 0; bit_num < 8; bit_num++) {
      DoubleJacobian(out, *out);
      uint32 bit = static_cast<uint32>(static_cast<int32>(
          (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31));
      AddJacobian(&tmp, a, *out);
      CopyConditional(out, a, first_bit & bit);
      CopyConditional(out, tmp, ~first_bit & bit);
      first_bit = first_bit & ~bit;
    }
  }
}

// Get224Bits reads 7 words from in and scatters their contents in
// little-endian form into 8 words at out, 28 bits per output word.
void Get224Bits(uint32* out, const uint32* in) {
  out[0] = NetToHost32(in[6]) & kBottom28Bits;
  out[1] = ((NetToHost32(in[5]) << 4) |
            (NetToHost32(in[6]) >> 28)) & kBottom28Bits;
  out[2] = ((NetToHost32(in[4]) << 8) |
            (NetToHost32(in[5]) >> 24)) & kBottom28Bits;
  out[3] = ((NetToHost32(in[3]) << 12) |
            (NetToHost32(in[4]) >> 20)) & kBottom28Bits;
  out[4] = ((NetToHost32(in[2]) << 16) |
            (NetToHost32(in[3]) >> 16)) & kBottom28Bits;
  out[5] = ((NetToHost32(in[1]) << 20) |
            (NetToHost32(in[2]) >> 12)) & kBottom28Bits;
  out[6] = ((NetToHost32(in[0]) << 24) |
            (NetToHost32(in[1]) >> 8)) & kBottom28Bits;
  out[7] = (NetToHost32(in[0]) >> 4) & kBottom28Bits;
}

// Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from
// each of 8 input words and writing them in big-endian order to 7 words at
// out.
void Put224Bits(uint32* out, const uint32* in) {
  out[6] = HostToNet32((in[0] >> 0) | (in[1] << 28));
  out[5] = HostToNet32((in[1] >> 4) | (in[2] << 24));
  out[4] = HostToNet32((in[2] >> 8) | (in[3] << 20));
  out[3] = HostToNet32((in[3] >> 12) | (in[4] << 16));
  out[2] = HostToNet32((in[4] >> 16) | (in[5] << 12));
  out[1] = HostToNet32((in[5] >> 20) | (in[6] << 8));
  out[0] = HostToNet32((in[6] >> 24) | (in[7] << 4));
}

} // anonymous namespace

namespace crypto {

namespace p224 {

bool Point::SetFromString(const base::StringPiece& in) {
  if (in.size() != 2*28)
    return false;
  const uint32* inwords = reinterpret_cast<const uint32*>(in.data());
  Get224Bits(x, inwords);
  Get224Bits(y, inwords + 7);
  memset(&z, 0, sizeof(z));
  z[0] = 1;

  // Check that the point is on the curve, i.e. that y² = x³ - 3x + b.
  FieldElement lhs;
  Square(&lhs, y);
  Contract(&lhs);

  FieldElement rhs;
  Square(&rhs, x);
  Mul(&rhs, x, rhs);

  FieldElement three_x;
  for (int i = 0; i < 8; i++) {
    three_x[i] = x[i] * 3;
  }
  Reduce(&three_x);
  Subtract(&rhs, rhs, three_x);
  Reduce(&rhs);

  ::Add(&rhs, rhs, kB);
  Contract(&rhs);
  return memcmp(&lhs, &rhs, sizeof(lhs)) == 0;
}

std::string Point::ToString() const {
  FieldElement zinv, zinv_sq, x, y;

  Invert(&zinv, this->z);
  Square(&zinv_sq, zinv);
  Mul(&x, this->x, zinv_sq);
  Mul(&zinv_sq, zinv_sq, zinv);
  Mul(&y, this->y, zinv_sq);

  Contract(&x);
  Contract(&y);

  uint32 outwords[14];
  Put224Bits(outwords, x);
  Put224Bits(outwords + 7, y);
  return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords));
}

void ScalarMult(const Point& in, const uint8* scalar, Point* out) {
  ::ScalarMult(out, in, scalar, 28);
}

// kBasePoint is the base point (generator) of the elliptic curve group.
static const Point kBasePoint = {
  {22813985, 52956513, 34677300, 203240812,
   12143107, 133374265, 225162431, 191946955},
  {83918388, 223877528, 122119236, 123340192,
   266784067, 263504429, 146143011, 198407736},
  {1, 0, 0, 0, 0, 0, 0, 0},
};

void ScalarBaseMult(const uint8* scalar, Point* out) {
  ::ScalarMult(out, kBasePoint, scalar, 28);
}

void Add(const Point& a, const Point& b, Point* out) {
  AddJacobian(out, a, b);
}

void Negate(const Point& in, Point* out) {
  // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z)
  // is the negative in Jacobian coordinates, but it doesn't actually appear to
  // be true in testing so this performs the negation in affine coordinates.
  FieldElement zinv, zinv_sq, y;
  Invert(&zinv, in.z);
  Square(&zinv_sq, zinv);
  Mul(&out->x, in.x, zinv_sq);
  Mul(&zinv_sq, zinv_sq, zinv);
  Mul(&y, in.y, zinv_sq);

  Subtract(&out->y, kP, y);
  Reduce(&out->y);

  memset(&out->z, 0, sizeof(out->z));
  out->z[0] = 1;
}

}  // namespace p224

}  // namespace crypto