1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gfx/icon_util.h"
#include "base/file_util.h"
#include "base/logging.h"
#include "base/scoped_handle.h"
#include "base/scoped_ptr.h"
#include "gfx/size.h"
#include "skia/ext/image_operations.h"
#include "third_party/skia/include/core/SkBitmap.h"
// Defining the dimensions for the icon images. We store only one value because
// we always resize to a square image; that is, the value 48 means that we are
// going to resize the given bitmap to a 48 by 48 pixels bitmap.
//
// The icon images appear in the icon file in same order in which their
// corresponding dimensions appear in the |icon_dimensions_| array, so it is
// important to keep this array sorted. Also note that the maximum icon image
// size we can handle is 255 by 255.
const int IconUtil::icon_dimensions_[] = {
8, // Recommended by the MSDN as a nice to have icon size.
10, // Used by the Shell (e.g. for shortcuts).
14, // Recommended by the MSDN as a nice to have icon size.
16, // Toolbar, Application and Shell icon sizes.
22, // Recommended by the MSDN as a nice to have icon size.
24, // Used by the Shell (e.g. for shortcuts).
32, // Toolbar, Dialog and Wizard icon size.
40, // Quick Launch.
48, // Alt+Tab icon size.
64, // Recommended by the MSDN as a nice to have icon size.
96, // Recommended by the MSDN as a nice to have icon size.
128 // Used by the Shell (e.g. for shortcuts).
};
HICON IconUtil::CreateHICONFromSkBitmap(const SkBitmap& bitmap) {
// Only 32 bit ARGB bitmaps are supported. We also try to perform as many
// validations as we can on the bitmap.
SkAutoLockPixels bitmap_lock(bitmap);
if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) ||
(bitmap.width() <= 0) || (bitmap.height() <= 0) ||
(bitmap.getPixels() == NULL)) {
return NULL;
}
// We start by creating a DIB which we'll use later on in order to create
// the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert
// may contain an alpha channel and the V5 header allows us to specify the
// alpha mask for the DIB.
BITMAPV5HEADER bitmap_header;
InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height());
void* bits;
HDC hdc = ::GetDC(NULL);
HBITMAP dib;
dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&bitmap_header),
DIB_RGB_COLORS, &bits, NULL, 0);
DCHECK(dib);
::ReleaseDC(NULL, hdc);
memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4);
// Icons are generally created using an AND and XOR masks where the AND
// specifies boolean transparency (the pixel is either opaque or
// transparent) and the XOR mask contains the actual image pixels. If the XOR
// mask bitmap has an alpha channel, the AND monochrome bitmap won't
// actually be used for computing the pixel transparency. Even though all our
// bitmap has an alpha channel, Windows might not agree when all alpha values
// are zero. So the monochrome bitmap is created with all pixels transparent
// for this case. Otherwise, it is created with all pixels opaque.
bool bitmap_has_alpha_channel = PixelsHaveAlpha(
static_cast<const uint32*>(bitmap.getPixels()),
bitmap.width() * bitmap.height());
scoped_array<uint8> mask_bits;
if (!bitmap_has_alpha_channel) {
// Bytes per line with paddings to make it word alignment.
size_t bytes_per_line = (bitmap.width() + 0xF) / 16 * 2;
size_t mask_bits_size = bytes_per_line * bitmap.height();
mask_bits.reset(new uint8[mask_bits_size]);
DCHECK(mask_bits.get());
// Make all pixels transparent.
memset(mask_bits.get(), 0xFF, mask_bits_size);
}
HBITMAP mono_bitmap = ::CreateBitmap(bitmap.width(), bitmap.height(), 1, 1,
reinterpret_cast<LPVOID>(mask_bits.get()));
DCHECK(mono_bitmap);
ICONINFO icon_info;
icon_info.fIcon = TRUE;
icon_info.xHotspot = 0;
icon_info.yHotspot = 0;
icon_info.hbmMask = mono_bitmap;
icon_info.hbmColor = dib;
HICON icon = ::CreateIconIndirect(&icon_info);
::DeleteObject(dib);
::DeleteObject(mono_bitmap);
return icon;
}
SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) {
// We start with validating parameters.
ICONINFO icon_info;
if (!icon || !(::GetIconInfo(icon, &icon_info)) ||
!icon_info.fIcon || s.IsEmpty()) {
return NULL;
}
// Allocating memory for the SkBitmap object. We are going to create an ARGB
// bitmap so we should set the configuration appropriately.
SkBitmap* bitmap = new SkBitmap;
DCHECK(bitmap);
bitmap->setConfig(SkBitmap::kARGB_8888_Config, s.width(), s.height());
bitmap->allocPixels();
bitmap->eraseARGB(0, 0, 0, 0);
SkAutoLockPixels bitmap_lock(*bitmap);
// Now we should create a DIB so that we can use ::DrawIconEx in order to
// obtain the icon's image.
BITMAPV5HEADER h;
InitializeBitmapHeader(&h, s.width(), s.height());
HDC dc = ::GetDC(NULL);
unsigned int* bits;
HBITMAP dib = ::CreateDIBSection(dc,
reinterpret_cast<BITMAPINFO*>(&h),
DIB_RGB_COLORS,
reinterpret_cast<void**>(&bits),
NULL,
0);
DCHECK(dib);
HDC dib_dc = CreateCompatibleDC(dc);
DCHECK(dib_dc);
::SelectObject(dib_dc, dib);
// Windows icons are defined using two different masks. The XOR mask, which
// represents the icon image and an AND mask which is a monochrome bitmap
// which indicates the transparency of each pixel.
//
// To make things more complex, the icon image itself can be an ARGB bitmap
// and therefore contain an alpha channel which specifies the transparency
// for each pixel. Unfortunately, there is no easy way to determine whether
// or not a bitmap has an alpha channel and therefore constructing the bitmap
// for the icon is nothing but straightforward.
//
// The idea is to read the AND mask but use it only if we know for sure that
// the icon image does not have an alpha channel. The only way to tell if the
// bitmap has an alpha channel is by looking through the pixels and checking
// whether there are non-zero alpha bytes.
//
// We start by drawing the AND mask into our DIB.
size_t num_pixels = s.GetArea();
memset(bits, 0, num_pixels * 4);
::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_MASK);
// Capture boolean opacity. We may not use it if we find out the bitmap has
// an alpha channel.
bool* opaque = new bool[num_pixels];
DCHECK(opaque);
for (size_t i = 0; i < num_pixels; ++i)
opaque[i] = !bits[i];
// Then draw the image itself which is really the XOR mask.
memset(bits, 0, num_pixels * 4);
::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_NORMAL);
memcpy(bitmap->getPixels(), static_cast<void*>(bits), num_pixels * 4);
// Finding out whether the bitmap has an alpha channel.
bool bitmap_has_alpha_channel = PixelsHaveAlpha(
static_cast<const uint32*>(bitmap->getPixels()), num_pixels);
// If the bitmap does not have an alpha channel, we need to build it using
// the previously captured AND mask. Otherwise, we are done.
if (!bitmap_has_alpha_channel) {
unsigned int* p = static_cast<unsigned int*>(bitmap->getPixels());
for (size_t i = 0; i < num_pixels; ++p, ++i) {
DCHECK_EQ((*p & 0xff000000), 0);
if (opaque[i])
*p |= 0xff000000;
else
*p &= 0x00ffffff;
}
}
delete [] opaque;
::DeleteDC(dib_dc);
::DeleteObject(dib);
::ReleaseDC(NULL, dc);
return bitmap;
}
bool IconUtil::CreateIconFileFromSkBitmap(const SkBitmap& bitmap,
const std::wstring& icon_file_name) {
// Only 32 bit ARGB bitmaps are supported. We also make sure the bitmap has
// been properly initialized.
SkAutoLockPixels bitmap_lock(bitmap);
if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) ||
(bitmap.height() <= 0) || (bitmap.width() <= 0) ||
(bitmap.getPixels() == NULL)) {
return false;
}
// We start by creating the file.
ScopedHandle icon_file(::CreateFile(icon_file_name.c_str(),
GENERIC_WRITE,
0,
NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL));
if (icon_file.Get() == INVALID_HANDLE_VALUE) {
return false;
}
// Creating a set of bitmaps corresponding to the icon images we'll end up
// storing in the icon file. Each bitmap is created by resizing the given
// bitmap to the desired size.
std::vector<SkBitmap> bitmaps;
CreateResizedBitmapSet(bitmap, &bitmaps);
int bitmap_count = static_cast<int>(bitmaps.size());
DCHECK_GT(bitmap_count, 0);
// Computing the total size of the buffer we need in order to store the
// images in the desired icon format.
int buffer_size = ComputeIconFileBufferSize(bitmaps);
unsigned char* buffer = new unsigned char[buffer_size];
DCHECK_NE(buffer, static_cast<unsigned char*>(NULL));
memset(buffer, 0, buffer_size);
// Setting the information in the structures residing within the buffer.
// First, we set the information which doesn't require iterating through the
// bitmap set and then we set the bitmap specific structures. In the latter
// step we also copy the actual bits.
ICONDIR* icon_dir = reinterpret_cast<ICONDIR*>(buffer);
icon_dir->idType = kResourceTypeIcon;
icon_dir->idCount = bitmap_count;
int icon_dir_count = bitmap_count - 1;
int offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count);
for (int i = 0; i < bitmap_count; i++) {
ICONIMAGE* image = reinterpret_cast<ICONIMAGE*>(buffer + offset);
DCHECK_LT(offset, buffer_size);
int icon_image_size = 0;
SetSingleIconImageInformation(bitmaps[i],
i,
icon_dir,
image,
offset,
&icon_image_size);
DCHECK_GT(icon_image_size, 0);
offset += icon_image_size;
}
DCHECK_EQ(offset, buffer_size);
// Finally, writing the data info the file.
DWORD bytes_written;
bool delete_file = false;
if (!WriteFile(icon_file.Get(), buffer, buffer_size, &bytes_written, NULL) ||
bytes_written != buffer_size) {
delete_file = true;
}
::CloseHandle(icon_file.Take());
delete [] buffer;
if (delete_file) {
bool success = file_util::Delete(icon_file_name, false);
DCHECK(success);
}
return !delete_file;
}
int IconUtil::GetIconDimensionCount() {
return sizeof(icon_dimensions_) / sizeof(icon_dimensions_[0]);
}
bool IconUtil::PixelsHaveAlpha(const uint32* pixels, size_t num_pixels) {
for (const uint32* end = pixels + num_pixels; pixels != end; ++pixels) {
if ((*pixels & 0xff000000) != 0) {
return true;
}
}
return false;
}
void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width,
int height) {
DCHECK(header);
memset(header, 0, sizeof(BITMAPV5HEADER));
header->bV5Size = sizeof(BITMAPV5HEADER);
// Note that icons are created using top-down DIBs so we must negate the
// value used for the icon's height.
header->bV5Width = width;
header->bV5Height = -height;
header->bV5Planes = 1;
header->bV5Compression = BI_RGB;
// Initializing the bitmap format to 32 bit ARGB.
header->bV5BitCount = 32;
header->bV5RedMask = 0x00FF0000;
header->bV5GreenMask = 0x0000FF00;
header->bV5BlueMask = 0x000000FF;
header->bV5AlphaMask = 0xFF000000;
// Use the system color space. The default value is LCS_CALIBRATED_RGB, which
// causes us to crash if we don't specify the approprite gammas, etc. See
// <http://msdn.microsoft.com/en-us/library/ms536531(VS.85).aspx> and
// <http://b/1283121>.
header->bV5CSType = LCS_WINDOWS_COLOR_SPACE;
// Use a valid value for bV5Intent as 0 is not a valid one.
// <http://msdn.microsoft.com/en-us/library/dd183381(VS.85).aspx>
header->bV5Intent = LCS_GM_IMAGES;
}
void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap,
int index,
ICONDIR* icon_dir,
ICONIMAGE* icon_image,
int image_offset,
int* image_byte_count) {
DCHECK_GE(index, 0);
DCHECK_NE(icon_dir, static_cast<ICONDIR*>(NULL));
DCHECK_NE(icon_image, static_cast<ICONIMAGE*>(NULL));
DCHECK_GT(image_offset, 0);
DCHECK_NE(image_byte_count, static_cast<int*>(NULL));
// We start by computing certain image values we'll use later on.
int xor_mask_size;
int and_mask_size;
int bytes_in_resource;
ComputeBitmapSizeComponents(bitmap,
&xor_mask_size,
&and_mask_size,
&bytes_in_resource);
icon_dir->idEntries[index].bWidth = static_cast<BYTE>(bitmap.width());
icon_dir->idEntries[index].bHeight = static_cast<BYTE>(bitmap.height());
icon_dir->idEntries[index].wPlanes = 1;
icon_dir->idEntries[index].wBitCount = 32;
icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource;
icon_dir->idEntries[index].dwImageOffset = image_offset;
icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER);
// The width field in the BITMAPINFOHEADER structure accounts for the height
// of both the AND mask and the XOR mask so we need to multiply the bitmap's
// height by 2. The same does NOT apply to the width field.
icon_image->icHeader.biHeight = bitmap.height() * 2;
icon_image->icHeader.biWidth = bitmap.width();
icon_image->icHeader.biPlanes = 1;
icon_image->icHeader.biBitCount = 32;
// We use a helper function for copying to actual bits from the SkBitmap
// object into the appropriate space in the buffer. We use a helper function
// (rather than just copying the bits) because there is no way to specify the
// orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file.
// Thus, if we just copy the bits, we'll end up with a bottom up bitmap in
// the .ico file which will result in the icon being displayed upside down.
// The helper function copies the image into the buffer one scanline at a
// time.
//
// Note that we don't need to initialize the AND mask since the memory
// allocated for the icon data buffer was initialized to zero. The icon we
// create will therefore use an AND mask containing only zeros, which is OK
// because the underlying image has an alpha channel. An AND mask containing
// only zeros essentially means we'll initially treat all the pixels as
// opaque.
unsigned char* image_addr = reinterpret_cast<unsigned char*>(icon_image);
unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER);
CopySkBitmapBitsIntoIconBuffer(bitmap, xor_mask_addr, xor_mask_size);
*image_byte_count = bytes_in_resource;
}
void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap,
unsigned char* buffer,
int buffer_size) {
SkAutoLockPixels bitmap_lock(bitmap);
unsigned char* bitmap_ptr = static_cast<unsigned char*>(bitmap.getPixels());
int bitmap_size = bitmap.height() * bitmap.width() * 4;
DCHECK_EQ(buffer_size, bitmap_size);
for (int i = 0; i < bitmap_size; i += bitmap.width() * 4) {
memcpy(buffer + bitmap_size - bitmap.width() * 4 - i,
bitmap_ptr + i,
bitmap.width() * 4);
}
}
void IconUtil::CreateResizedBitmapSet(const SkBitmap& bitmap_to_resize,
std::vector<SkBitmap>* bitmaps) {
DCHECK_NE(bitmaps, static_cast<std::vector<SkBitmap>* >(NULL));
DCHECK_EQ(static_cast<int>(bitmaps->size()), 0);
bool inserted_original_bitmap = false;
for (int i = 0; i < GetIconDimensionCount(); i++) {
// If the dimensions of the bitmap we are resizing are the same as the
// current dimensions, then we should insert the bitmap and not a resized
// bitmap. If the bitmap's dimensions are smaller, we insert our bitmap
// first so that the bitmaps we return in the vector are sorted based on
// their dimensions.
if (!inserted_original_bitmap) {
if ((bitmap_to_resize.width() == icon_dimensions_[i]) &&
(bitmap_to_resize.height() == icon_dimensions_[i])) {
bitmaps->push_back(bitmap_to_resize);
inserted_original_bitmap = true;
continue;
}
if ((bitmap_to_resize.width() < icon_dimensions_[i]) &&
(bitmap_to_resize.height() < icon_dimensions_[i])) {
bitmaps->push_back(bitmap_to_resize);
inserted_original_bitmap = true;
}
}
bitmaps->push_back(skia::ImageOperations::Resize(
bitmap_to_resize, skia::ImageOperations::RESIZE_LANCZOS3,
icon_dimensions_[i], icon_dimensions_[i]));
}
if (!inserted_original_bitmap) {
bitmaps->push_back(bitmap_to_resize);
}
}
int IconUtil::ComputeIconFileBufferSize(const std::vector<SkBitmap>& set) {
// We start by counting the bytes for the structures that don't depend on the
// number of icon images. Note that sizeof(ICONDIR) already accounts for a
// single ICONDIRENTRY structure, which is why we subtract one from the
// number of bitmaps.
int total_buffer_size = 0;
total_buffer_size += sizeof(ICONDIR);
int bitmap_count = static_cast<int>(set.size());
total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1);
int dimension_count = GetIconDimensionCount();
DCHECK_GE(bitmap_count, dimension_count);
// Add the bitmap specific structure sizes.
for (int i = 0; i < bitmap_count; i++) {
int xor_mask_size;
int and_mask_size;
int bytes_in_resource;
ComputeBitmapSizeComponents(set[i],
&xor_mask_size,
&and_mask_size,
&bytes_in_resource);
total_buffer_size += bytes_in_resource;
}
return total_buffer_size;
}
void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap,
int* xor_mask_size,
int* and_mask_size,
int* bytes_in_resource) {
// The XOR mask size is easy to calculate since we only deal with 32bpp
// images.
*xor_mask_size = bitmap.width() * bitmap.height() * 4;
// Computing the AND mask is a little trickier since it is a monochrome
// bitmap (regardless of the number of bits per pixels used in the XOR mask).
// There are two things we must make sure we do when computing the AND mask
// size:
//
// 1. Make sure the right number of bytes is allocated for each AND mask
// scan line in case the number of pixels in the image is not divisible by
// 8. For example, in a 15X15 image, 15 / 8 is one byte short of
// containing the number of bits we need in order to describe a single
// image scan line so we need to add a byte. Thus, we need 2 bytes instead
// of 1 for each scan line.
//
// 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the
// total icon image has a 4 byte alignment). In the 15X15 image example
// above, we can not use 2 bytes so we increase it to the next multiple of
// 4 which is 4.
//
// Once we compute the size for a singe AND mask scan line, we multiply that
// number by the image height in order to get the total number of bytes for
// the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes
// for the monochrome bitmap representing the AND mask.
int and_line_length = (bitmap.width() + 7) >> 3;
and_line_length = (and_line_length + 3) & ~3;
*and_mask_size = and_line_length * bitmap.height();
int masks_size = *xor_mask_size + *and_mask_size;
*bytes_in_resource = masks_size + sizeof(BITMAPINFOHEADER);
}
|