summaryrefslogtreecommitdiffstats
path: root/gfx/skbitmap_operations.cc
blob: 5ce8ebd203ee66aabb0a22fe75b7ce4dd4e3ee3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "gfx/skbitmap_operations.h"

#include <algorithm>

#include "base/logging.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkCanvas.h"
#include "third_party/skia/include/core/SkColorPriv.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"

// static
SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
  DCHECK(image.config() == SkBitmap::kARGB_8888_Config);

  SkAutoLockPixels lock_image(image);

  SkBitmap inverted;
  inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(),
                     0);
  inverted.allocPixels();
  inverted.eraseARGB(0, 0, 0, 0);

  for (int y = 0; y < image.height(); ++y) {
    uint32* image_row = image.getAddr32(0, y);
    uint32* dst_row = inverted.getAddr32(0, y);

    for (int x = 0; x < image.width(); ++x) {
      uint32 image_pixel = image_row[x];
      dst_row[x] = (image_pixel & 0xFF000000) |
                   (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
    }
  }

  return inverted;
}

// static
SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
                                                      const SkBitmap& second) {
  DCHECK(first.width() == second.width());
  DCHECK(first.height() == second.height());
  DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
  DCHECK(first.config() == SkBitmap::kARGB_8888_Config);

  SkAutoLockPixels lock_first(first);
  SkAutoLockPixels lock_second(second);

  SkBitmap superimposed;
  superimposed.setConfig(SkBitmap::kARGB_8888_Config,
                         first.width(), first.height());
  superimposed.allocPixels();
  superimposed.eraseARGB(0, 0, 0, 0);

  SkCanvas canvas(superimposed);

  SkRect rect;
  rect.fLeft = 0;
  rect.fTop = 0;
  rect.fRight = SkIntToScalar(first.width());
  rect.fBottom = SkIntToScalar(first.height());

  canvas.drawBitmapRect(first, NULL, rect);
  canvas.drawBitmapRect(second, NULL, rect);

  return superimposed;
}

// static
SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
                                                 const SkBitmap& second,
                                                 double alpha) {
  DCHECK((alpha >= 0) && (alpha <= 1));
  DCHECK(first.width() == second.width());
  DCHECK(first.height() == second.height());
  DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
  DCHECK(first.config() == SkBitmap::kARGB_8888_Config);

  // Optimize for case where we won't need to blend anything.
  static const double alpha_min = 1.0 / 255;
  static const double alpha_max = 254.0 / 255;
  if (alpha < alpha_min)
    return first;
  else if (alpha > alpha_max)
    return second;

  SkAutoLockPixels lock_first(first);
  SkAutoLockPixels lock_second(second);

  SkBitmap blended;
  blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(),
                    0);
  blended.allocPixels();
  blended.eraseARGB(0, 0, 0, 0);

  double first_alpha = 1 - alpha;

  for (int y = 0; y < first.height(); ++y) {
    uint32* first_row = first.getAddr32(0, y);
    uint32* second_row = second.getAddr32(0, y);
    uint32* dst_row = blended.getAddr32(0, y);

    for (int x = 0; x < first.width(); ++x) {
      uint32 first_pixel = first_row[x];
      uint32 second_pixel = second_row[x];

      int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
                               (SkColorGetA(second_pixel) * alpha));
      int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
                               (SkColorGetR(second_pixel) * alpha));
      int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
                               (SkColorGetG(second_pixel) * alpha));
      int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
                               (SkColorGetB(second_pixel) * alpha));

      dst_row[x] = SkColorSetARGB(a, r, g, b);
    }
  }

  return blended;
}

// static
SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
                                                const SkBitmap& alpha) {
  DCHECK(rgb.width() == alpha.width());
  DCHECK(rgb.height() == alpha.height());
  DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
  DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config);
  DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config);

  SkBitmap masked;
  masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0);
  masked.allocPixels();
  masked.eraseARGB(0, 0, 0, 0);

  SkAutoLockPixels lock_rgb(rgb);
  SkAutoLockPixels lock_alpha(alpha);
  SkAutoLockPixels lock_masked(masked);

  for (int y = 0; y < masked.height(); ++y) {
    uint32* rgb_row = rgb.getAddr32(0, y);
    uint32* alpha_row = alpha.getAddr32(0, y);
    uint32* dst_row = masked.getAddr32(0, y);

    for (int x = 0; x < masked.width(); ++x) {
      SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
      int alpha = SkAlphaMul(SkColorGetA(rgb_pixel), SkColorGetA(alpha_row[x]));
      dst_row[x] = SkColorSetARGB(alpha,
                                  SkAlphaMul(SkColorGetR(rgb_pixel), alpha),
                                  SkAlphaMul(SkColorGetG(rgb_pixel), alpha),
                                  SkAlphaMul(SkColorGetB(rgb_pixel), alpha));
    }
  }

  return masked;
}

// static
SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
                                                    const SkBitmap& image,
                                                    const SkBitmap& mask) {
  DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
  DCHECK(mask.config() == SkBitmap::kARGB_8888_Config);

  SkBitmap background;
  background.setConfig(
      SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0);
  background.allocPixels();

  double bg_a = SkColorGetA(color);
  double bg_r = SkColorGetR(color);
  double bg_g = SkColorGetG(color);
  double bg_b = SkColorGetB(color);

  SkAutoLockPixels lock_mask(mask);
  SkAutoLockPixels lock_image(image);
  SkAutoLockPixels lock_background(background);

  for (int y = 0; y < mask.height(); ++y) {
    uint32* dst_row = background.getAddr32(0, y);
    uint32* image_row = image.getAddr32(0, y % image.height());
    uint32* mask_row = mask.getAddr32(0, y);

    for (int x = 0; x < mask.width(); ++x) {
      uint32 image_pixel = image_row[x % image.width()];

      double img_a = SkColorGetA(image_pixel);
      double img_r = SkColorGetR(image_pixel);
      double img_g = SkColorGetG(image_pixel);
      double img_b = SkColorGetB(image_pixel);

      double img_alpha = static_cast<double>(img_a) / 255.0;
      double img_inv = 1 - img_alpha;

      double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;

      dst_row[x] = SkColorSetARGB(
          static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
          static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
          static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
          static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
    }
  }

  return background;
}


// static
SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
    const SkBitmap& bitmap,
    color_utils::HSL hsl_shift) {
  DCHECK(bitmap.empty() == false);
  DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);

  SkBitmap shifted;
  shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
                    bitmap.height(), 0);
  shifted.allocPixels();
  shifted.eraseARGB(0, 0, 0, 0);
  shifted.setIsOpaque(false);

  SkAutoLockPixels lock_bitmap(bitmap);
  SkAutoLockPixels lock_shifted(shifted);

  // Loop through the pixels of the original bitmap.
  for (int y = 0; y < bitmap.height(); ++y) {
    SkPMColor* pixels = bitmap.getAddr32(0, y);
    SkPMColor* tinted_pixels = shifted.getAddr32(0, y);

    for (int x = 0; x < bitmap.width(); ++x) {
      tinted_pixels[x] = SkPreMultiplyColor(color_utils::HSLShift(
          SkUnPreMultiply::PMColorToColor(pixels[x]), hsl_shift));
    }
  }

  return shifted;
}

// static
SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
                                               int src_x, int src_y,
                                               int dst_w, int dst_h) {
  DCHECK(source.getConfig() == SkBitmap::kARGB_8888_Config);

  SkBitmap cropped;
  cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0);
  cropped.allocPixels();
  cropped.eraseARGB(0, 0, 0, 0);

  SkAutoLockPixels lock_source(source);
  SkAutoLockPixels lock_cropped(cropped);

  // Loop through the pixels of the original bitmap.
  for (int y = 0; y < dst_h; ++y) {
    int y_pix = (src_y + y) % source.height();
    while (y_pix < 0)
      y_pix += source.height();

    uint32* source_row = source.getAddr32(0, y_pix);
    uint32* dst_row = cropped.getAddr32(0, y);

    for (int x = 0; x < dst_w; ++x) {
      int x_pix = (src_x + x) % source.width();
      while (x_pix < 0)
        x_pix += source.width();

      dst_row[x] = source_row[x_pix];
    }
  }

  return cropped;
}

// static
SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
                                                      int min_w, int min_h) {
  if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
      (min_w < 0) || (min_h < 0))
    return bitmap;

  // Since bitmaps are refcounted, this copy will be fast.
  SkBitmap current = bitmap;
  while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
         (current.width() > 1) && (current.height() > 1))
    current = DownsampleByTwo(current);
  return current;
}

// static
SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
  // Handle the nop case.
  if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
    return bitmap;

  SkBitmap result;
  result.setConfig(SkBitmap::kARGB_8888_Config,
                   (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
  result.allocPixels();

  SkAutoLockPixels lock(bitmap);
  for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
    for (int dest_x = 0; dest_x < result.width(); ++dest_x) {
      // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
      // clever in that it does two channels at once: alpha and green ("ag")
      // and red and blue ("rb"). Each channel gets averaged across 4 pixels
      // to get the result.
      int src_x = dest_x << 1;
      int src_y = dest_y << 1;
      const SkPMColor* cur_src = bitmap.getAddr32(src_x, src_y);
      SkPMColor tmp, ag, rb;

      // Top left pixel of the 2x2 block.
      tmp = *cur_src;
      ag = (tmp >> 8) & 0xFF00FF;
      rb = tmp & 0xFF00FF;
      if (src_x < (bitmap.width() - 1))
        ++cur_src;

      // Top right pixel of the 2x2 block.
      tmp = *cur_src;
      ag += (tmp >> 8) & 0xFF00FF;
      rb += tmp & 0xFF00FF;
      if (src_y < (bitmap.height() - 1))
        cur_src = bitmap.getAddr32(src_x, src_y + 1);
      else
        cur_src = bitmap.getAddr32(src_x, src_y);  // Move back to the first.

      // Bottom left pixel of the 2x2 block.
      tmp = *cur_src;
      ag += (tmp >> 8) & 0xFF00FF;
      rb += tmp & 0xFF00FF;
      if (src_x < (bitmap.width() - 1))
        ++cur_src;

      // Bottom right pixel of the 2x2 block.
      tmp = *cur_src;
      ag += (tmp >> 8) & 0xFF00FF;
      rb += tmp & 0xFF00FF;

      // Put the channels back together, dividing each by 4 to get the average.
      // |ag| has the alpha and green channels shifted right by 8 bits from
      // there they should end up, so shifting left by 6 gives them in the
      // correct position divided by 4.
      *result.getAddr32(dest_x, dest_y) =
          ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
    }
  }

  return result;
}