1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gfx/skbitmap_operations.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColorPriv.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"
namespace {
// Returns true if each channel of the given two colors are "close." This is
// used for comparing colors where rounding errors may cause off-by-one.
inline bool ColorsClose(uint32_t a, uint32_t b) {
return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) <= 2 &&
abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) <= 2 &&
abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) <= 2 &&
abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) <= 2;
}
inline bool MultipliedColorsClose(uint32_t a, uint32_t b) {
return ColorsClose(SkUnPreMultiply::PMColorToColor(a),
SkUnPreMultiply::PMColorToColor(b));
}
bool BitmapsClose(const SkBitmap& a, const SkBitmap& b) {
SkAutoLockPixels a_lock(a);
SkAutoLockPixels b_lock(b);
for (int y = 0; y < a.height(); y++) {
for (int x = 0; x < a.width(); x++) {
SkColor a_pixel = *a.getAddr32(x, y);
SkColor b_pixel = *b.getAddr32(x, y);
if (!ColorsClose(a_pixel, b_pixel))
return false;
}
}
return true;
}
void FillDataToBitmap(int w, int h, SkBitmap* bmp) {
bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
bmp->allocPixels();
unsigned char* src_data =
reinterpret_cast<unsigned char*>(bmp->getAddr32(0, 0));
for (int i = 0; i < w * h; i++) {
src_data[i * 4 + 0] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 1] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 2] = static_cast<unsigned char>(i % 255);
src_data[i * 4 + 3] = static_cast<unsigned char>(i % 255);
}
}
// The reference (i.e., old) implementation of |CreateHSLShiftedBitmap()|.
SkBitmap ReferenceCreateHSLShiftedBitmap(
const SkBitmap& bitmap,
color_utils::HSL hsl_shift) {
SkBitmap shifted;
shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
bitmap.height(), 0);
shifted.allocPixels();
shifted.eraseARGB(0, 0, 0, 0);
shifted.setIsOpaque(false);
SkAutoLockPixels lock_bitmap(bitmap);
SkAutoLockPixels lock_shifted(shifted);
// Loop through the pixels of the original bitmap.
for (int y = 0; y < bitmap.height(); ++y) {
SkPMColor* pixels = bitmap.getAddr32(0, y);
SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
for (int x = 0; x < bitmap.width(); ++x) {
tinted_pixels[x] = SkPreMultiplyColor(color_utils::HSLShift(
SkUnPreMultiply::PMColorToColor(pixels[x]), hsl_shift));
}
}
return shifted;
}
} // namespace
// Invert bitmap and verify the each pixel is inverted and the alpha value is
// not changed.
TEST(SkBitmapOperationsTest, CreateInvertedBitmap) {
int src_w = 16, src_h = 16;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src.allocPixels();
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
int i = y * src_w + x;
*src.getAddr32(x, y) =
SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0);
}
}
SkBitmap inverted = SkBitmapOperations::CreateInvertedBitmap(src);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels inverted_lock(inverted);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
int i = y * src_w + x;
EXPECT_EQ(static_cast<unsigned int>((255 - i) % 255),
SkColorGetA(*inverted.getAddr32(x, y)));
EXPECT_EQ(static_cast<unsigned int>(255 - (i % 255)),
SkColorGetR(*inverted.getAddr32(x, y)));
EXPECT_EQ(static_cast<unsigned int>(255 - (i * 4 % 255)),
SkColorGetG(*inverted.getAddr32(x, y)));
EXPECT_EQ(static_cast<unsigned int>(255),
SkColorGetB(*inverted.getAddr32(x, y)));
}
}
}
// Blend two bitmaps together at 50% alpha and verify that the result
// is the middle-blend of the two.
TEST(SkBitmapOperationsTest, CreateBlendedBitmap) {
int src_w = 16, src_h = 16;
SkBitmap src_a;
src_a.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src_a.allocPixels();
SkBitmap src_b;
src_b.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src_b.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
*src_a.getAddr32(x, y) = SkColorSetARGB(255, 0, i * 2 % 255, i % 255);
*src_b.getAddr32(x, y) =
SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0);
i++;
}
}
// Shift to red.
SkBitmap blended = SkBitmapOperations::CreateBlendedBitmap(
src_a, src_b, 0.5);
SkAutoLockPixels srca_lock(src_a);
SkAutoLockPixels srcb_lock(src_b);
SkAutoLockPixels blended_lock(blended);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
int i = y * src_w + x;
EXPECT_EQ(static_cast<unsigned int>((255 + ((255 - i) % 255)) / 2),
SkColorGetA(*blended.getAddr32(x, y)));
EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2),
SkColorGetR(*blended.getAddr32(x, y)));
EXPECT_EQ((static_cast<unsigned int>((i * 2) % 255 + (i * 4) % 255) / 2),
SkColorGetG(*blended.getAddr32(x, y)));
EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2),
SkColorGetB(*blended.getAddr32(x, y)));
}
}
}
// Test our masking functions.
TEST(SkBitmapOperationsTest, CreateMaskedBitmap) {
int src_w = 16, src_h = 16;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
// Generate alpha mask
SkBitmap alpha;
alpha.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
alpha.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
*alpha.getAddr32(x, y) = SkColorSetARGB((i + 128) % 255,
(i + 128) % 255,
(i + 64) % 255,
(i + 0) % 255);
i++;
}
}
SkBitmap masked = SkBitmapOperations::CreateMaskedBitmap(src, alpha);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels alpha_lock(alpha);
SkAutoLockPixels masked_lock(masked);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
// Test that the alpha is equal.
SkColor src_pixel = SkUnPreMultiply::PMColorToColor(*src.getAddr32(x, y));
SkColor alpha_pixel =
SkUnPreMultiply::PMColorToColor(*alpha.getAddr32(x, y));
SkColor masked_pixel = *masked.getAddr32(x, y);
int alpha_value = SkAlphaMul(SkColorGetA(src_pixel),
SkColorGetA(alpha_pixel));
SkColor expected_pixel = SkColorSetARGB(
alpha_value,
SkAlphaMul(SkColorGetR(src_pixel), alpha_value),
SkAlphaMul(SkColorGetG(src_pixel), alpha_value),
SkAlphaMul(SkColorGetB(src_pixel), alpha_value));
EXPECT_TRUE(ColorsClose(expected_pixel, masked_pixel));
}
}
}
// Make sure that when shifting a bitmap without any shift parameters,
// the end result is close enough to the original (rounding errors
// notwithstanding).
TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapToSame) {
int src_w = 16, src_h = 16;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
*src.getAddr32(x, y) = SkPreMultiplyColor(SkColorSetARGB((i + 128) % 255,
(i + 128) % 255, (i + 64) % 255, (i + 0) % 255));
i++;
}
}
color_utils::HSL hsl = { -1, -1, -1 };
SkBitmap shifted = ReferenceCreateHSLShiftedBitmap(src, hsl);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels shifted_lock(shifted);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
SkColor src_pixel = *src.getAddr32(x, y);
SkColor shifted_pixel = *shifted.getAddr32(x, y);
EXPECT_TRUE(MultipliedColorsClose(src_pixel, shifted_pixel)) <<
"source: (a,r,g,b) = (" << SkColorGetA(src_pixel) << "," <<
SkColorGetR(src_pixel) << "," <<
SkColorGetG(src_pixel) << "," <<
SkColorGetB(src_pixel) << "); " <<
"shifted: (a,r,g,b) = (" << SkColorGetA(shifted_pixel) << "," <<
SkColorGetR(shifted_pixel) << "," <<
SkColorGetG(shifted_pixel) << "," <<
SkColorGetB(shifted_pixel) << ")";
}
}
}
// Shift a blue bitmap to red.
TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapHueOnly) {
int src_w = 16, src_h = 16;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
src.allocPixels();
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
*src.getAddr32(x, y) = SkColorSetARGB(255, 0, 0, i % 255);
i++;
}
}
// Shift to red.
color_utils::HSL hsl = { 0, -1, -1 };
SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl);
SkAutoLockPixels src_lock(src);
SkAutoLockPixels shifted_lock(shifted);
for (int y = 0, i = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_TRUE(ColorsClose(*shifted.getAddr32(x, y),
SkColorSetARGB(255, i % 255, 0, 0)));
i++;
}
}
}
// Validate HSL shift.
TEST(SkBitmapOperationsTest, ValidateHSLShift) {
// Note: 255/51 = 5 (exactly) => 6 including 0!
const int inc = 51;
const int dim = 255 / inc + 1;
SkBitmap src;
src.setConfig(SkBitmap::kARGB_8888_Config, dim*dim, dim*dim);
src.allocPixels();
for (int a = 0, y = 0; a <= 255; a += inc) {
for (int r = 0; r <= 255; r += inc, y++) {
for (int g = 0, x = 0; g <= 255; g += inc) {
for (int b = 0; b <= 255; b+= inc, x++) {
*src.getAddr32(x, y) =
SkPreMultiplyColor(SkColorSetARGB(a, r, g, b));
}
}
}
}
// Shhhh. The spec says I should set things to -1 for "no change", but
// actually -0.1 will do. Don't tell anyone I did this.
for (double h = -0.1; h <= 1.0001; h += 0.1) {
for (double s = -0.1; s <= 1.0001; s += 0.1) {
for (double l = -0.1; l <= 1.0001; l += 0.1) {
color_utils::HSL hsl = { h, s, l };
SkBitmap ref_shifted = ReferenceCreateHSLShiftedBitmap(src, hsl);
SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl);
EXPECT_TRUE(BitmapsClose(ref_shifted, shifted))
<< "h = " << h << ", s = " << s << ", l = " << l;
}
}
}
}
// Test our cropping.
TEST(SkBitmapOperationsTest, CreateCroppedBitmap) {
int src_w = 16, src_h = 16;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(src, 4, 4,
8, 8);
ASSERT_EQ(8, cropped.width());
ASSERT_EQ(8, cropped.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels cropped_lock(cropped);
for (int y = 4; y < 12; y++) {
for (int x = 4; x < 12; x++) {
EXPECT_EQ(*src.getAddr32(x, y),
*cropped.getAddr32(x - 4, y - 4));
}
}
}
// Test whether our cropping correctly wraps across image boundaries.
TEST(SkBitmapOperationsTest, CreateCroppedBitmapWrapping) {
int src_w = 16, src_h = 16;
SkBitmap src;
FillDataToBitmap(src_w, src_h, &src);
SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(
src, src_w / 2, src_h / 2, src_w, src_h);
ASSERT_EQ(src_w, cropped.width());
ASSERT_EQ(src_h, cropped.height());
SkAutoLockPixels src_lock(src);
SkAutoLockPixels cropped_lock(cropped);
for (int y = 0; y < src_h; y++) {
for (int x = 0; x < src_w; x++) {
EXPECT_EQ(*src.getAddr32(x, y),
*cropped.getAddr32((x + src_w / 2) % src_w,
(y + src_h / 2) % src_h));
}
}
}
TEST(SkBitmapOperationsTest, DownsampleByTwo) {
// Use an odd-sized bitmap to make sure the edge cases where there isn't a
// 2x2 block of pixels is handled correctly.
// Here's the ARGB example
//
// 50% transparent green opaque 50% blue white
// 80008000 FF000080 FFFFFFFF
//
// 50% transparent red opaque 50% gray black
// 80800000 80808080 FF000000
//
// black white 50% gray
// FF000000 FFFFFFFF FF808080
//
// The result of this computation should be:
// A0404040 FF808080
// FF808080 FF808080
SkBitmap input;
input.setConfig(SkBitmap::kARGB_8888_Config, 3, 3);
input.allocPixels();
// The color order may be different, but we don't care (the channels are
// trated the same).
*input.getAddr32(0, 0) = 0x80008000;
*input.getAddr32(1, 0) = 0xFF000080;
*input.getAddr32(2, 0) = 0xFFFFFFFF;
*input.getAddr32(0, 1) = 0x80800000;
*input.getAddr32(1, 1) = 0x80808080;
*input.getAddr32(2, 1) = 0xFF000000;
*input.getAddr32(0, 2) = 0xFF000000;
*input.getAddr32(1, 2) = 0xFFFFFFFF;
*input.getAddr32(2, 2) = 0xFF808080;
SkBitmap result = SkBitmapOperations::DownsampleByTwo(input);
EXPECT_EQ(2, result.width());
EXPECT_EQ(2, result.height());
// Some of the values are off-by-one due to rounding.
SkAutoLockPixels lock(result);
EXPECT_EQ(0x9f404040, *result.getAddr32(0, 0));
EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(1, 0));
EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(0, 1));
EXPECT_EQ(0xFF808080, *result.getAddr32(1, 1));
}
// Test edge cases for DownsampleByTwo.
TEST(SkBitmapOperationsTest, DownsampleByTwoSmall) {
SkPMColor reference = 0xFF4080FF;
// Test a 1x1 bitmap.
SkBitmap one_by_one;
one_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 1);
one_by_one.allocPixels();
*one_by_one.getAddr32(0, 0) = reference;
SkBitmap result = SkBitmapOperations::DownsampleByTwo(one_by_one);
SkAutoLockPixels lock1(result);
EXPECT_EQ(1, result.width());
EXPECT_EQ(1, result.height());
EXPECT_EQ(reference, *result.getAddr32(0, 0));
// Test an n by 1 bitmap.
SkBitmap one_by_n;
one_by_n.setConfig(SkBitmap::kARGB_8888_Config, 300, 1);
one_by_n.allocPixels();
result = SkBitmapOperations::DownsampleByTwo(one_by_n);
SkAutoLockPixels lock2(result);
EXPECT_EQ(300, result.width());
EXPECT_EQ(1, result.height());
// Test a 1 by n bitmap.
SkBitmap n_by_one;
n_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 300);
n_by_one.allocPixels();
result = SkBitmapOperations::DownsampleByTwo(n_by_one);
SkAutoLockPixels lock3(result);
EXPECT_EQ(1, result.width());
EXPECT_EQ(300, result.height());
// Test an empty bitmap
SkBitmap empty;
result = SkBitmapOperations::DownsampleByTwo(empty);
EXPECT_TRUE(result.isNull());
EXPECT_EQ(0, result.width());
EXPECT_EQ(0, result.height());
}
// Here we assume DownsampleByTwo works correctly (it's tested above) and
// just make sure that the wrapper function does the right thing.
TEST(SkBitmapOperationsTest, DownsampleByTwoUntilSize) {
// First make sure a "too small" bitmap doesn't get modified at all.
SkBitmap too_small;
too_small.setConfig(SkBitmap::kARGB_8888_Config, 10, 10);
too_small.allocPixels();
SkBitmap result = SkBitmapOperations::DownsampleByTwoUntilSize(
too_small, 16, 16);
EXPECT_EQ(10, result.width());
EXPECT_EQ(10, result.height());
// Now make sure giving it a 0x0 target returns something reasonable.
result = SkBitmapOperations::DownsampleByTwoUntilSize(too_small, 0, 0);
EXPECT_EQ(1, result.width());
EXPECT_EQ(1, result.height());
// Test multiple steps of downsampling.
SkBitmap large;
large.setConfig(SkBitmap::kARGB_8888_Config, 100, 43);
large.allocPixels();
result = SkBitmapOperations::DownsampleByTwoUntilSize(large, 6, 6);
// The result should be divided in half 100x43 -> 50x22 -> 25x11
EXPECT_EQ(25, result.width());
EXPECT_EQ(11, result.height());
}
TEST(SkBitmapOperationsTest, UnPreMultiply) {
SkBitmap input;
input.setConfig(SkBitmap::kARGB_8888_Config, 2, 2);
input.allocPixels();
*input.getAddr32(0, 0) = 0x80000000;
*input.getAddr32(1, 0) = 0x80808080;
*input.getAddr32(0, 1) = 0xFF00CC88;
*input.getAddr32(1, 1) = 0x0000CC88;
SkBitmap result = SkBitmapOperations::UnPreMultiply(input);
EXPECT_EQ(2, result.width());
EXPECT_EQ(2, result.height());
SkAutoLockPixels lock(result);
EXPECT_EQ(0x80000000, *result.getAddr32(0, 0));
EXPECT_EQ(0x80FFFFFF, *result.getAddr32(1, 0));
EXPECT_EQ(0xFF00CC88, *result.getAddr32(0, 1));
EXPECT_EQ(0x00000000u, *result.getAddr32(1, 1)); // "Division by zero".
}
|