summaryrefslogtreecommitdiffstats
path: root/gpu/command_buffer/client/fenced_allocator.cc
blob: 57a35fde262a19a5117eb0b9ec41a631f10a4d8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This file contains the implementation of the FencedAllocator class.

#include "../client/fenced_allocator.h"
#include <algorithm>
#include "../client/cmd_buffer_helper.h"

namespace gpu {

#ifndef COMPILER_MSVC
const FencedAllocator::Offset FencedAllocator::kInvalidOffset;
#endif

FencedAllocator::~FencedAllocator() {
  // Free blocks pending tokens.
  for (unsigned int i = 0; i < blocks_.size(); ++i) {
    if (blocks_[i].state == FREE_PENDING_TOKEN) {
      i = WaitForTokenAndFreeBlock(i);
    }
  }
  DCHECK_EQ(blocks_.size(), 1u);
  DCHECK_EQ(blocks_[0].state, FREE);
}

// Looks for a non-allocated block that is big enough. Search in the FREE
// blocks first (for direct usage), first-fit, then in the FREE_PENDING_TOKEN
// blocks, waiting for them. The current implementation isn't smart about
// optimizing what to wait for, just looks inside the block in order (first-fit
// as well).
FencedAllocator::Offset FencedAllocator::Alloc(unsigned int size) {
  // Similarly to malloc, an allocation of 0 allocates at least 1 byte, to
  // return different pointers every time.
  if (size == 0) size = 1;

  // Try first to allocate in a free block.
  for (unsigned int i = 0; i < blocks_.size(); ++i) {
    Block &block = blocks_[i];
    if (block.state == FREE && block.size >= size) {
      return AllocInBlock(i, size);
    }
  }

  // No free block is available. Look for blocks pending tokens, and wait for
  // them to be re-usable.
  for (unsigned int i = 0; i < blocks_.size(); ++i) {
    if (blocks_[i].state != FREE_PENDING_TOKEN)
      continue;
    i = WaitForTokenAndFreeBlock(i);
    if (blocks_[i].size >= size)
      return AllocInBlock(i, size);
  }
  return kInvalidOffset;
}

// Looks for the corresponding block, mark it FREE, and collapse it if
// necessary.
void FencedAllocator::Free(FencedAllocator::Offset offset) {
  BlockIndex index = GetBlockByOffset(offset);
  DCHECK_NE(blocks_[index].state, FREE);
  blocks_[index].state = FREE;
  CollapseFreeBlock(index);
}

// Looks for the corresponding block, mark it FREE_PENDING_TOKEN.
void FencedAllocator::FreePendingToken(FencedAllocator::Offset offset,
                                       unsigned int token) {
  BlockIndex index = GetBlockByOffset(offset);
  Block &block = blocks_[index];
  block.state = FREE_PENDING_TOKEN;
  block.token = token;
}

// Gets the max of the size of the blocks marked as free.
unsigned int FencedAllocator::GetLargestFreeSize() {
  unsigned int max_size = 0;
  for (unsigned int i = 0; i < blocks_.size(); ++i) {
    Block &block = blocks_[i];
    if (block.state == FREE)
      max_size = std::max(max_size, block.size);
  }
  return max_size;
}

// Gets the size of the largest segment of blocks that are either FREE or
// FREE_PENDING_TOKEN.
unsigned int FencedAllocator::GetLargestFreeOrPendingSize() {
  unsigned int max_size = 0;
  unsigned int current_size = 0;
  for (unsigned int i = 0; i < blocks_.size(); ++i) {
    Block &block = blocks_[i];
    if (block.state == IN_USE) {
      max_size = std::max(max_size, current_size);
      current_size = 0;
    } else {
      DCHECK(block.state == FREE || block.state == FREE_PENDING_TOKEN);
      current_size += block.size;
    }
  }
  return std::max(max_size, current_size);
}

// Makes sure that:
// - there is at least one block.
// - there are no contiguous FREE blocks (they should have been collapsed).
// - the successive offsets match the block sizes, and they are in order.
bool FencedAllocator::CheckConsistency() {
  if (blocks_.size() < 1) return false;
  for (unsigned int i = 0; i < blocks_.size() - 1; ++i) {
    Block &current = blocks_[i];
    Block &next = blocks_[i + 1];
    // This test is NOT included in the next one, because offset is unsigned.
    if (next.offset <= current.offset)
      return false;
    if (next.offset != current.offset + current.size)
      return false;
    if (current.state == FREE && next.state == FREE)
      return false;
  }
  return true;
}

// Collapse the block to the next one, then to the previous one. Provided the
// structure is consistent, those are the only blocks eligible for collapse.
FencedAllocator::BlockIndex FencedAllocator::CollapseFreeBlock(
    BlockIndex index) {
  if (index + 1 < blocks_.size()) {
    Block &next = blocks_[index + 1];
    if (next.state == FREE) {
      blocks_[index].size += next.size;
      blocks_.erase(blocks_.begin() + index + 1);
    }
  }
  if (index > 0) {
    Block &prev = blocks_[index - 1];
    if (prev.state == FREE) {
      prev.size += blocks_[index].size;
      blocks_.erase(blocks_.begin() + index);
      --index;
    }
  }
  return index;
}

// Waits for the block's token, then mark the block as free, then collapse it.
FencedAllocator::BlockIndex FencedAllocator::WaitForTokenAndFreeBlock(
    BlockIndex index) {
  Block &block = blocks_[index];
  DCHECK_EQ(block.state, FREE_PENDING_TOKEN);
  helper_->WaitForToken(block.token);
  block.state = FREE;
  return CollapseFreeBlock(index);
}

// If the block is exactly the requested size, simply mark it IN_USE, otherwise
// split it and mark the first one (of the requested size) IN_USE.
FencedAllocator::Offset FencedAllocator::AllocInBlock(BlockIndex index,
                                                      unsigned int size) {
  Block &block = blocks_[index];
  DCHECK_GE(block.size, size);
  DCHECK_EQ(block.state, FREE);
  Offset offset = block.offset;
  if (block.size == size) {
    block.state = IN_USE;
    return offset;
  }
  Block newblock = { FREE, offset + size, block.size - size, kUnusedToken};
  block.state = IN_USE;
  block.size = size;
  // this is the last thing being done because it may invalidate block;
  blocks_.insert(blocks_.begin() + index + 1, newblock);
  return offset;
}

// The blocks are in offset order, so we can do a binary search.
FencedAllocator::BlockIndex FencedAllocator::GetBlockByOffset(Offset offset) {
  Block templ = { IN_USE, offset, 0, kUnusedToken };
  Container::iterator it = std::lower_bound(blocks_.begin(), blocks_.end(),
                                            templ, OffsetCmp());
  DCHECK(it != blocks_.end() && it->offset == offset);
  return it-blocks_.begin();
}

}  // namespace gpu