summaryrefslogtreecommitdiffstats
path: root/ipc/ipc_channel_posix.cc
blob: 5800f928d145ee34931c477fde71cf296e4e3dd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
// Copyright (c) 2008 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ipc/ipc_channel_posix.h"

#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/un.h>

#include <string>
#include <map>

#include "base/command_line.h"
#include "base/eintr_wrapper.h"
#include "base/global_descriptors_posix.h"
#include "base/lock.h"
#include "base/logging.h"
#include "base/process_util.h"
#include "base/scoped_ptr.h"
#include "base/singleton.h"
#include "base/stats_counters.h"
#include "base/string_util.h"
#include "ipc/ipc_descriptors.h"
#include "ipc/ipc_switches.h"
#include "ipc/file_descriptor_set_posix.h"
#include "ipc/ipc_logging.h"
#include "ipc/ipc_message_utils.h"

namespace IPC {

// IPC channels on Windows use named pipes (CreateNamedPipe()) with
// channel ids as the pipe names.  Channels on POSIX use anonymous
// Unix domain sockets created via socketpair() as pipes.  These don't
// quite line up.
//
// When creating a child subprocess, the parent side of the fork
// arranges it such that the initial control channel ends up on the
// magic file descriptor kPrimaryIPCChannel in the child.  Future
// connections (file descriptors) can then be passed via that
// connection via sendmsg().

//------------------------------------------------------------------------------
namespace {

// The PipeMap class works around this quirk related to unit tests:
//
// When running as a server, we install the client socket in a
// specific file descriptor number (@kPrimaryIPCChannel). However, we
// also have to support the case where we are running unittests in the
// same process.  (We do not support forking without execing.)
//
// Case 1: normal running
//   The IPC server object will install a mapping in PipeMap from the
//   name which it was given to the client pipe. When forking the client, the
//   GetClientFileDescriptorMapping will ensure that the socket is installed in
//   the magic slot (@kPrimaryIPCChannel). The client will search for the
//   mapping, but it won't find any since we are in a new process. Thus the
//   magic fd number is returned. Once the client connects, the server will
//   close its copy of the client socket and remove the mapping.
//
// Case 2: unittests - client and server in the same process
//   The IPC server will install a mapping as before. The client will search
//   for a mapping and find out. It duplicates the file descriptor and
//   connects. Once the client connects, the server will close the original
//   copy of the client socket and remove the mapping. Thus, when the client
//   object closes, it will close the only remaining copy of the client socket
//   in the fd table and the server will see EOF on its side.
//
// TODO(port): a client process cannot connect to multiple IPC channels with
// this scheme.

class PipeMap {
 public:
  // Lookup a given channel id. Return -1 if not found.
  int Lookup(const std::string& channel_id) {
    AutoLock locked(lock_);

    ChannelToFDMap::const_iterator i = map_.find(channel_id);
    if (i == map_.end())
      return -1;
    return i->second;
  }

  // Remove the mapping for the given channel id. No error is signaled if the
  // channel_id doesn't exist
  void RemoveAndClose(const std::string& channel_id) {
    AutoLock locked(lock_);

    ChannelToFDMap::iterator i = map_.find(channel_id);
    if (i != map_.end()) {
      HANDLE_EINTR(close(i->second));
      map_.erase(i);
    }
  }

  // Insert a mapping from @channel_id to @fd. It's a fatal error to insert a
  // mapping if one already exists for the given channel_id
  void Insert(const std::string& channel_id, int fd) {
    AutoLock locked(lock_);
    DCHECK(fd != -1);

    ChannelToFDMap::const_iterator i = map_.find(channel_id);
    CHECK(i == map_.end()) << "Creating second IPC server (fd " << fd << ") "
                           << "for '" << channel_id << "' while first "
                           << "(fd " << i->second << ") still exists";
    map_[channel_id] = fd;
  }

 private:
  Lock lock_;
  typedef std::map<std::string, int> ChannelToFDMap;
  ChannelToFDMap map_;
};

// Used to map a channel name to the equivalent FD # in the current process.
// Returns -1 if the channel is unknown.
int ChannelNameToFD(const std::string& channel_id) {
  // See the large block comment above PipeMap for the reasoning here.
  const int fd = Singleton<PipeMap>()->Lookup(channel_id);

  if (fd != -1) {
    int dup_fd = dup(fd);
    if (dup_fd < 0)
      PLOG(FATAL) << "dup(" << fd << ")";
    return dup_fd;
  }

  return fd;
}

//------------------------------------------------------------------------------
sockaddr_un sizecheck;
const size_t kMaxPipeNameLength = sizeof(sizecheck.sun_path);

// Creates a Fifo with the specified name ready to listen on.
bool CreateServerFifo(const std::string& pipe_name, int* server_listen_fd) {
  DCHECK(server_listen_fd);
  DCHECK_GT(pipe_name.length(), 0u);
  DCHECK_LT(pipe_name.length(), kMaxPipeNameLength);

  if (pipe_name.length() == 0 || pipe_name.length() >= kMaxPipeNameLength) {
    return false;
  }

  // Create socket.
  int fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0) {
    return false;
  }

  // Make socket non-blocking
  if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
    HANDLE_EINTR(close(fd));
    return false;
  }

  // Delete any old FS instances.
  unlink(pipe_name.c_str());

  // Create unix_addr structure
  struct sockaddr_un unix_addr;
  memset(&unix_addr, 0, sizeof(unix_addr));
  unix_addr.sun_family = AF_UNIX;
  snprintf(unix_addr.sun_path, kMaxPipeNameLength, "%s", pipe_name.c_str());
  size_t unix_addr_len = offsetof(struct sockaddr_un, sun_path) +
      strlen(unix_addr.sun_path) + 1;

  // Bind the socket.
  if (bind(fd, reinterpret_cast<const sockaddr*>(&unix_addr),
           unix_addr_len) != 0) {
    HANDLE_EINTR(close(fd));
    return false;
  }

  // Start listening on the socket.
  const int listen_queue_length = 1;
  if (listen(fd, listen_queue_length) != 0) {
    HANDLE_EINTR(close(fd));
    return false;
  }

  *server_listen_fd = fd;
  return true;
}

// Accept a connection on a fifo.
bool ServerAcceptFifoConnection(int server_listen_fd, int* server_socket) {
  DCHECK(server_socket);

  int accept_fd = HANDLE_EINTR(accept(server_listen_fd, NULL, 0));
  if (accept_fd < 0)
    return false;
  if (fcntl(accept_fd, F_SETFL, O_NONBLOCK) == -1) {
    HANDLE_EINTR(close(accept_fd));
    return false;
  }

  *server_socket = accept_fd;
  return true;
}

bool ClientConnectToFifo(const std::string &pipe_name, int* client_socket) {
  DCHECK(client_socket);
  DCHECK_LT(pipe_name.length(), kMaxPipeNameLength);

  // Create socket.
  int fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0) {
    LOG(ERROR) << "fd is invalid";
    return false;
  }

  // Make socket non-blocking
  if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
    LOG(ERROR) << "fcntl failed";
    HANDLE_EINTR(close(fd));
    return false;
  }

  // Create server side of socket.
  struct sockaddr_un  server_unix_addr;
  memset(&server_unix_addr, 0, sizeof(server_unix_addr));
  server_unix_addr.sun_family = AF_UNIX;
  snprintf(server_unix_addr.sun_path, kMaxPipeNameLength, "%s",
           pipe_name.c_str());
  size_t server_unix_addr_len = offsetof(struct sockaddr_un, sun_path) +
      strlen(server_unix_addr.sun_path) + 1;

  if (HANDLE_EINTR(connect(fd, reinterpret_cast<sockaddr*>(&server_unix_addr),
                           server_unix_addr_len)) != 0) {
    HANDLE_EINTR(close(fd));
    return false;
  }

  *client_socket = fd;
  return true;
}

}  // namespace
//------------------------------------------------------------------------------

Channel::ChannelImpl::ChannelImpl(const std::string& channel_id, Mode mode,
                                  Listener* listener)
    : mode_(mode),
      is_blocked_on_write_(false),
      message_send_bytes_written_(0),
      uses_fifo_(CommandLine::ForCurrentProcess()->HasSwitch(
                     switches::kIPCUseFIFO)),
      server_listen_pipe_(-1),
      pipe_(-1),
      client_pipe_(-1),
#if defined(OS_LINUX)
      fd_pipe_(-1),
      remote_fd_pipe_(-1),
#endif
      listener_(listener),
      waiting_connect_(true),
      processing_incoming_(false),
      factory_(this) {
  if (!CreatePipe(channel_id, mode)) {
    // The pipe may have been closed already.
    PLOG(WARNING) << "Unable to create pipe named \"" << channel_id
                  << "\" in " << (mode == MODE_SERVER ? "server" : "client")
                  << " mode";
  }
}

// static
void AddChannelSocket(const std::string& name, int socket) {
  Singleton<PipeMap>()->Insert(name, socket);
}

// static
void RemoveAndCloseChannelSocket(const std::string& name) {
  Singleton<PipeMap>()->RemoveAndClose(name);
}

// static
bool SocketPair(int* fd1, int* fd2) {
  int pipe_fds[2];
  if (socketpair(AF_UNIX, SOCK_STREAM, 0, pipe_fds) != 0) {
    PLOG(ERROR) << "socketpair()";
    return false;
  }

  // Set both ends to be non-blocking.
  if (fcntl(pipe_fds[0], F_SETFL, O_NONBLOCK) == -1 ||
      fcntl(pipe_fds[1], F_SETFL, O_NONBLOCK) == -1) {
    PLOG(ERROR) << "fcntl(O_NONBLOCK)";
    HANDLE_EINTR(close(pipe_fds[0]));
    HANDLE_EINTR(close(pipe_fds[1]));
    return false;
  }

  *fd1 = pipe_fds[0];
  *fd2 = pipe_fds[1];

  return true;
}

bool Channel::ChannelImpl::CreatePipe(const std::string& channel_id,
                                      Mode mode) {
  DCHECK(server_listen_pipe_ == -1 && pipe_ == -1);

  if (uses_fifo_) {
    // This only happens in unit tests; see the comment above PipeMap.
    // TODO(playmobil): We shouldn't need to create fifos on disk.
    // TODO(playmobil): If we do, they should be in the user data directory.
    // TODO(playmobil): Cleanup any stale fifos.
    pipe_name_ = "/var/tmp/chrome_" + channel_id;
    if (mode == MODE_SERVER) {
      if (!CreateServerFifo(pipe_name_, &server_listen_pipe_)) {
        return false;
      }
    } else {
      if (!ClientConnectToFifo(pipe_name_, &pipe_)) {
        return false;
      }
      waiting_connect_ = false;
    }
  } else {
    // This is the normal (non-unit-test) case, where we're using sockets.
    // Three possible cases:
    // 1) It's for a channel we already have a pipe for; reuse it.
    // 2) It's the initial IPC channel:
    //   2a) Server side: create the pipe.
    //   2b) Client side: Pull the pipe out of the GlobalDescriptors set.
    pipe_name_ = channel_id;
    pipe_ = ChannelNameToFD(pipe_name_);
    if (pipe_ < 0) {
      // Initial IPC channel.
      if (mode == MODE_SERVER) {
        if (!SocketPair(&pipe_, &client_pipe_))
          return false;
        AddChannelSocket(pipe_name_, client_pipe_);
      } else {
        pipe_ = Singleton<base::GlobalDescriptors>()->Get(kPrimaryIPCChannel);
      }
    } else {
      waiting_connect_ = mode == MODE_SERVER;
    }
  }

  // Create the Hello message to be sent when Connect is called
  scoped_ptr<Message> msg(new Message(MSG_ROUTING_NONE,
                                      HELLO_MESSAGE_TYPE,
                                      IPC::Message::PRIORITY_NORMAL));
  #if defined(OS_LINUX)
  if (!uses_fifo_) {
    // On Linux, the seccomp sandbox makes it very expensive to call
    // recvmsg() and sendmsg(). Often, we are perfectly OK with resorting to
    // read() and write(), which are cheap.
    //
    // As we cannot anticipate, when the sender will provide us with file
    // handles, we have to make the decision about whether we call read() or
    // recvmsg() before we actually make the call. The easiest option is to
    // create a dedicated socketpair() for exchanging file handles.
    if (mode == MODE_SERVER) {
      fd_pipe_ = -1;
    } else if (remote_fd_pipe_ == -1) {
      if (!SocketPair(&fd_pipe_, &remote_fd_pipe_)) {
        return false;
      }
    }
  }
  #endif
  if (!msg->WriteInt(base::GetCurrentProcId())) {
    Close();
    return false;
  }

  output_queue_.push(msg.release());
  return true;
}

bool Channel::ChannelImpl::Connect() {
  if (mode_ == MODE_SERVER && uses_fifo_) {
    if (server_listen_pipe_ == -1) {
      return false;
    }
    MessageLoopForIO::current()->WatchFileDescriptor(
        server_listen_pipe_,
        true,
        MessageLoopForIO::WATCH_READ,
        &server_listen_connection_watcher_,
        this);
  } else {
    if (pipe_ == -1) {
      return false;
    }
    MessageLoopForIO::current()->WatchFileDescriptor(
        pipe_,
        true,
        MessageLoopForIO::WATCH_READ,
        &read_watcher_,
        this);
    waiting_connect_ = mode_ == MODE_SERVER;
  }

  if (!waiting_connect_)
    return ProcessOutgoingMessages();
  return true;
}

bool Channel::ChannelImpl::ProcessIncomingMessages() {
  ssize_t bytes_read = 0;

  struct msghdr msg = {0};
  struct iovec iov = {input_buf_, Channel::kReadBufferSize};

  msg.msg_iovlen = 1;
  msg.msg_control = input_cmsg_buf_;

  for (;;) {
    msg.msg_iov = &iov;

    if (bytes_read == 0) {
      if (pipe_ == -1)
        return false;

      // Read from pipe.
      // recvmsg() returns 0 if the connection has closed or EAGAIN if no data
      // is waiting on the pipe.
#if defined(OS_LINUX)
      if (fd_pipe_ >= 0) {
        bytes_read = HANDLE_EINTR(read(pipe_, input_buf_,
                                       Channel::kReadBufferSize));
        msg.msg_controllen = 0;
      } else
#endif
      {
        msg.msg_controllen = sizeof(input_cmsg_buf_);
        bytes_read = HANDLE_EINTR(recvmsg(pipe_, &msg, MSG_DONTWAIT));
      }
      if (bytes_read < 0) {
        if (errno == EAGAIN) {
          return true;
#if defined(OS_MACOSX)
        } else if (errno == EPERM) {
          // On OSX, reading from a pipe with no listener returns EPERM
          // treat this as a special case to prevent spurious error messages
          // to the console.
          return false;
#endif  // defined(OS_MACOSX)
        } else if (errno == ECONNRESET || errno == EPIPE) {
          return false;
        } else {
          PLOG(ERROR) << "pipe error (" << pipe_ << ")";
          return false;
        }
      } else if (bytes_read == 0) {
        // The pipe has closed...
        return false;
      }
    }
    DCHECK(bytes_read);

    if (client_pipe_ != -1) {
      Singleton<PipeMap>()->RemoveAndClose(pipe_name_);
      client_pipe_ = -1;
    }

    // a pointer to an array of |num_wire_fds| file descriptors from the read
    const int* wire_fds = NULL;
    unsigned num_wire_fds = 0;

    // walk the list of control messages and, if we find an array of file
    // descriptors, save a pointer to the array

    // This next if statement is to work around an OSX issue where
    // CMSG_FIRSTHDR will return non-NULL in the case that controllen == 0.
    // Here's a test case:
    //
    // int main() {
    // struct msghdr msg;
    //   msg.msg_control = &msg;
    //   msg.msg_controllen = 0;
    //   if (CMSG_FIRSTHDR(&msg))
    //     printf("Bug found!\n");
    // }
    if (msg.msg_controllen > 0) {
      // On OSX, CMSG_FIRSTHDR doesn't handle the case where controllen is 0
      // and will return a pointer into nowhere.
      for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg;
           cmsg = CMSG_NXTHDR(&msg, cmsg)) {
        if (cmsg->cmsg_level == SOL_SOCKET &&
            cmsg->cmsg_type == SCM_RIGHTS) {
          const unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0);
          DCHECK(payload_len % sizeof(int) == 0);
          wire_fds = reinterpret_cast<int*>(CMSG_DATA(cmsg));
          num_wire_fds = payload_len / 4;

          if (msg.msg_flags & MSG_CTRUNC) {
            LOG(ERROR) << "SCM_RIGHTS message was truncated"
                       << " cmsg_len:" << cmsg->cmsg_len
                       << " fd:" << pipe_;
            for (unsigned i = 0; i < num_wire_fds; ++i)
              HANDLE_EINTR(close(wire_fds[i]));
            return false;
          }
          break;
        }
      }
    }

    // Process messages from input buffer.
    const char *p;
    const char *end;
    if (input_overflow_buf_.empty()) {
      p = input_buf_;
      end = p + bytes_read;
    } else {
      if (input_overflow_buf_.size() >
         static_cast<size_t>(kMaximumMessageSize - bytes_read)) {
        input_overflow_buf_.clear();
        LOG(ERROR) << "IPC message is too big";
        return false;
      }
      input_overflow_buf_.append(input_buf_, bytes_read);
      p = input_overflow_buf_.data();
      end = p + input_overflow_buf_.size();
    }

    // A pointer to an array of |num_fds| file descriptors which includes any
    // fds that have spilled over from a previous read.
    const int* fds = NULL;
    unsigned num_fds = 0;
    unsigned fds_i = 0;  // the index of the first unused descriptor

    if (input_overflow_fds_.empty()) {
      fds = wire_fds;
      num_fds = num_wire_fds;
    } else {
      if (num_wire_fds > 0) {
        const size_t prev_size = input_overflow_fds_.size();
        input_overflow_fds_.resize(prev_size + num_wire_fds);
        memcpy(&input_overflow_fds_[prev_size], wire_fds,
               num_wire_fds * sizeof(int));
      }
      fds = &input_overflow_fds_[0];
      num_fds = input_overflow_fds_.size();
    }

    while (p < end) {
      const char* message_tail = Message::FindNext(p, end);
      if (message_tail) {
        int len = static_cast<int>(message_tail - p);
        Message m(p, len);

        if (m.header()->num_fds) {
          // the message has file descriptors
          const char* error = NULL;
          if (m.header()->num_fds > num_fds - fds_i) {
            // the message has been completely received, but we didn't get
            // enough file descriptors.
#if defined(OS_LINUX)
            if (!uses_fifo_) {
              char dummy;
              struct iovec fd_pipe_iov = { &dummy, 1 };
              msg.msg_iov = &fd_pipe_iov;
              msg.msg_controllen = sizeof(input_cmsg_buf_);
              ssize_t n = HANDLE_EINTR(recvmsg(fd_pipe_, &msg, MSG_DONTWAIT));
              if (n == 1 && msg.msg_controllen > 0) {
                for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg;
                     cmsg = CMSG_NXTHDR(&msg, cmsg)) {
                  if (cmsg->cmsg_level == SOL_SOCKET &&
                      cmsg->cmsg_type == SCM_RIGHTS) {
                    const unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0);
                    DCHECK(payload_len % sizeof(int) == 0);
                    wire_fds = reinterpret_cast<int*>(CMSG_DATA(cmsg));
                    num_wire_fds = payload_len / 4;

                    if (msg.msg_flags & MSG_CTRUNC) {
                      LOG(ERROR) << "SCM_RIGHTS message was truncated"
                                 << " cmsg_len:" << cmsg->cmsg_len
                                 << " fd:" << pipe_;
                      for (unsigned i = 0; i < num_wire_fds; ++i)
                        HANDLE_EINTR(close(wire_fds[i]));
                      return false;
                    }
                    break;
                  }
                }
                if (input_overflow_fds_.empty()) {
                  fds = wire_fds;
                  num_fds = num_wire_fds;
                } else {
                  if (num_wire_fds > 0) {
                    const size_t prev_size = input_overflow_fds_.size();
                    input_overflow_fds_.resize(prev_size + num_wire_fds);
                    memcpy(&input_overflow_fds_[prev_size], wire_fds,
                           num_wire_fds * sizeof(int));
                  }
                  fds = &input_overflow_fds_[0];
                  num_fds = input_overflow_fds_.size();
                }
              }
            }
            if (m.header()->num_fds > num_fds - fds_i)
#endif
              error = "Message needs unreceived descriptors";
          }

          if (m.header()->num_fds >
              FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) {
            // There are too many descriptors in this message
            error = "Message requires an excessive number of descriptors";
          }

          if (error) {
            LOG(WARNING) << error
                         << " channel:" << this
                         << " message-type:" << m.type()
                         << " header()->num_fds:" << m.header()->num_fds
                         << " num_fds:" << num_fds
                         << " fds_i:" << fds_i;
            // close the existing file descriptors so that we don't leak them
            for (unsigned i = fds_i; i < num_fds; ++i)
              HANDLE_EINTR(close(fds[i]));
            input_overflow_fds_.clear();
            // abort the connection
            return false;
          }

          m.file_descriptor_set()->SetDescriptors(
              &fds[fds_i], m.header()->num_fds);
          fds_i += m.header()->num_fds;
        }
#ifdef IPC_MESSAGE_DEBUG_EXTRA
        DLOG(INFO) << "received message on channel @" << this <<
                      " with type " << m.type();
#endif
        if (m.routing_id() == MSG_ROUTING_NONE &&
            m.type() == HELLO_MESSAGE_TYPE) {
          // The Hello message contains only the process id.
          void *iter = NULL;
          int pid;
          if (!m.ReadInt(&iter, &pid)) {
            NOTREACHED();
          }
#if defined(OS_LINUX)
          if (mode_ == MODE_SERVER && !uses_fifo_) {
            // On Linux, the Hello message from the client to the server
            // also contains the fd_pipe_, which  will be used for all
            // subsequent file descriptor passing.
            DCHECK_EQ(m.file_descriptor_set()->size(), 1);
            base::FileDescriptor descriptor;
            if (!m.ReadFileDescriptor(&iter, &descriptor)) {
              NOTREACHED();
            }
            fd_pipe_ = descriptor.fd;
            CHECK(descriptor.auto_close);
          }
#endif
          listener_->OnChannelConnected(pid);
        } else {
          listener_->OnMessageReceived(m);
        }
        p = message_tail;
      } else {
        // Last message is partial.
        break;
      }
      input_overflow_fds_ = std::vector<int>(&fds[fds_i], &fds[num_fds]);
      fds_i = 0;
      fds = &input_overflow_fds_[0];
      num_fds = input_overflow_fds_.size();
    }
    input_overflow_buf_.assign(p, end - p);
    input_overflow_fds_ = std::vector<int>(&fds[fds_i], &fds[num_fds]);

    // When the input data buffer is empty, the overflow fds should be too. If
    // this is not the case, we probably have a rogue renderer which is trying
    // to fill our descriptor table.
    if (input_overflow_buf_.empty() && !input_overflow_fds_.empty()) {
      // We close these descriptors in Close()
      return false;
    }

    bytes_read = 0;  // Get more data.
  }

  return true;
}

bool Channel::ChannelImpl::ProcessOutgoingMessages() {
  DCHECK(!waiting_connect_);  // Why are we trying to send messages if there's
                              // no connection?
  is_blocked_on_write_ = false;

  if (output_queue_.empty()) {
    return true;
  }

  if (pipe_ == -1) {
    return false;
  }

  // Write out all the messages we can till the write blocks or there are no
  // more outgoing messages.
  while (!output_queue_.empty()) {
    Message* msg = output_queue_.front();

#if defined(OS_LINUX)
    scoped_ptr<Message> hello;
    if (remote_fd_pipe_ != -1 &&
        msg->routing_id() == MSG_ROUTING_NONE &&
        msg->type() == HELLO_MESSAGE_TYPE) {
      hello.reset(new Message(MSG_ROUTING_NONE,
                              HELLO_MESSAGE_TYPE,
                              IPC::Message::PRIORITY_NORMAL));
      void* iter = NULL;
      int pid;
      if (!msg->ReadInt(&iter, &pid) ||
          !hello->WriteInt(pid)) {
        NOTREACHED();
      }
      DCHECK_EQ(hello->size(), msg->size());
      if (!hello->WriteFileDescriptor(base::FileDescriptor(remote_fd_pipe_,
                                                           false))) {
        NOTREACHED();
      }
      msg = hello.get();
      DCHECK_EQ(msg->file_descriptor_set()->size(), 1);
    }
#endif

    size_t amt_to_write = msg->size() - message_send_bytes_written_;
    DCHECK(amt_to_write != 0);
    const char* out_bytes = reinterpret_cast<const char*>(msg->data()) +
        message_send_bytes_written_;

    struct msghdr msgh = {0};
    struct iovec iov = {const_cast<char*>(out_bytes), amt_to_write};
    msgh.msg_iov = &iov;
    msgh.msg_iovlen = 1;
    char buf[CMSG_SPACE(
        sizeof(int[FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE]))];

    ssize_t bytes_written = 1;
    int fd_written = -1;

    if (message_send_bytes_written_ == 0 &&
        !msg->file_descriptor_set()->empty()) {
      // This is the first chunk of a message which has descriptors to send
      struct cmsghdr *cmsg;
      const unsigned num_fds = msg->file_descriptor_set()->size();

      DCHECK_LE(num_fds, FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE);

      msgh.msg_control = buf;
      msgh.msg_controllen = CMSG_SPACE(sizeof(int) * num_fds);
      cmsg = CMSG_FIRSTHDR(&msgh);
      cmsg->cmsg_level = SOL_SOCKET;
      cmsg->cmsg_type = SCM_RIGHTS;
      cmsg->cmsg_len = CMSG_LEN(sizeof(int) * num_fds);
      msg->file_descriptor_set()->GetDescriptors(
          reinterpret_cast<int*>(CMSG_DATA(cmsg)));
      msgh.msg_controllen = cmsg->cmsg_len;

      msg->header()->num_fds = num_fds;

#if defined(OS_LINUX)
      if (!uses_fifo_ &&
          (msg->routing_id() != MSG_ROUTING_NONE ||
           msg->type() != HELLO_MESSAGE_TYPE)) {
        // Only the Hello message sends the file descriptor with the message.
        // Subsequently, we can send file descriptors on the dedicated
        // fd_pipe_ which makes Seccomp sandbox operation more efficient.
        struct iovec fd_pipe_iov = { const_cast<char *>(""), 1 };
        msgh.msg_iov = &fd_pipe_iov;
        fd_written = fd_pipe_;
        bytes_written = HANDLE_EINTR(sendmsg(fd_pipe_, &msgh, MSG_DONTWAIT));
        msgh.msg_iov = &iov;
        msgh.msg_controllen = 0;
        if (bytes_written > 0) {
          msg->file_descriptor_set()->CommitAll();
        }
      }
#endif
    }

    if (bytes_written == 1) {
      fd_written = pipe_;
#if defined(OS_LINUX)
      if (mode_ != MODE_SERVER && !uses_fifo_ &&
          msg->routing_id() == MSG_ROUTING_NONE &&
          msg->type() == HELLO_MESSAGE_TYPE) {
        DCHECK_EQ(msg->file_descriptor_set()->size(), 1);
      }
      if (!uses_fifo_ && !msgh.msg_controllen) {
        bytes_written = HANDLE_EINTR(write(pipe_, out_bytes, amt_to_write));
      } else
#endif
      {
        bytes_written = HANDLE_EINTR(sendmsg(pipe_, &msgh, MSG_DONTWAIT));
      }
    }
    if (bytes_written > 0)
      msg->file_descriptor_set()->CommitAll();

    if (bytes_written < 0 && errno != EAGAIN) {
#if defined(OS_MACOSX)
      // On OSX writing to a pipe with no listener returns EPERM.
      if (errno == EPERM) {
        Close();
        return false;
      }
#endif  // OS_MACOSX
      if (errno == EPIPE) {
        Close();
        return false;
      }
      PLOG(ERROR) << "pipe error on " << fd_written;
      return false;
    }

    if (static_cast<size_t>(bytes_written) != amt_to_write) {
      if (bytes_written > 0) {
        // If write() fails with EAGAIN then bytes_written will be -1.
        message_send_bytes_written_ += bytes_written;
      }

      // Tell libevent to call us back once things are unblocked.
      is_blocked_on_write_ = true;
      MessageLoopForIO::current()->WatchFileDescriptor(
          pipe_,
          false,  // One shot
          MessageLoopForIO::WATCH_WRITE,
          &write_watcher_,
          this);
      return true;
    } else {
      message_send_bytes_written_ = 0;

      // Message sent OK!
#ifdef IPC_MESSAGE_DEBUG_EXTRA
      DLOG(INFO) << "sent message @" << msg << " on channel @" << this <<
                    " with type " << msg->type();
#endif
      delete output_queue_.front();
      output_queue_.pop();
    }
  }
  return true;
}

bool Channel::ChannelImpl::Send(Message* message) {
#ifdef IPC_MESSAGE_DEBUG_EXTRA
  DLOG(INFO) << "sending message @" << message << " on channel @" << this
             << " with type " << message->type()
             << " (" << output_queue_.size() << " in queue)";
#endif

#ifdef IPC_MESSAGE_LOG_ENABLED
  Logging::current()->OnSendMessage(message, "");
#endif

  output_queue_.push(message);
  if (!waiting_connect_) {
    if (!is_blocked_on_write_) {
      if (!ProcessOutgoingMessages())
        return false;
    }
  }

  return true;
}

int Channel::ChannelImpl::GetClientFileDescriptor() const {
  return client_pipe_;
}

// Called by libevent when we can read from th pipe without blocking.
void Channel::ChannelImpl::OnFileCanReadWithoutBlocking(int fd) {
  bool send_server_hello_msg = false;
  if (waiting_connect_ && mode_ == MODE_SERVER) {
    if (uses_fifo_) {
      if (!ServerAcceptFifoConnection(server_listen_pipe_, &pipe_)) {
        Close();
      }

      // No need to watch the listening socket any longer since only one client
      // can connect.  So unregister with libevent.
      server_listen_connection_watcher_.StopWatchingFileDescriptor();

      // Start watching our end of the socket.
      MessageLoopForIO::current()->WatchFileDescriptor(
          pipe_,
          true,
          MessageLoopForIO::WATCH_READ,
          &read_watcher_,
          this);

      waiting_connect_ = false;
    } else {
      // In the case of a socketpair() the server starts listening on its end
      // of the pipe in Connect().
      waiting_connect_ = false;
    }
    send_server_hello_msg = true;
  }

  if (!waiting_connect_ && fd == pipe_) {
    if (!ProcessIncomingMessages()) {
      Close();
      listener_->OnChannelError();
      // The OnChannelError() call may delete this, so we need to exit now.
      return;
    }
  }

  // If we're a server and handshaking, then we want to make sure that we
  // only send our handshake message after we've processed the client's.
  // This gives us a chance to kill the client if the incoming handshake
  // is invalid.
  if (send_server_hello_msg) {
    ProcessOutgoingMessages();
  }
}

// Called by libevent when we can write to the pipe without blocking.
void Channel::ChannelImpl::OnFileCanWriteWithoutBlocking(int fd) {
  if (!ProcessOutgoingMessages()) {
    Close();
    listener_->OnChannelError();
  }
}

void Channel::ChannelImpl::Close() {
  // Close can be called multiple time, so we need to make sure we're
  // idempotent.

  // Unregister libevent for the listening socket and close it.
  server_listen_connection_watcher_.StopWatchingFileDescriptor();

  if (server_listen_pipe_ != -1) {
    HANDLE_EINTR(close(server_listen_pipe_));
    server_listen_pipe_ = -1;
  }

  // Unregister libevent for the FIFO and close it.
  read_watcher_.StopWatchingFileDescriptor();
  write_watcher_.StopWatchingFileDescriptor();
  if (pipe_ != -1) {
    HANDLE_EINTR(close(pipe_));
    pipe_ = -1;
  }
  if (client_pipe_ != -1) {
    Singleton<PipeMap>()->RemoveAndClose(pipe_name_);
    client_pipe_ = -1;
  }
#if defined(OS_LINUX)
  if (fd_pipe_ != -1) {
    HANDLE_EINTR(close(fd_pipe_));
    fd_pipe_ = -1;
  }
  if (remote_fd_pipe_ != -1) {
    HANDLE_EINTR(close(remote_fd_pipe_));
    remote_fd_pipe_ = -1;
  }
#endif

  if (uses_fifo_) {
    // Unlink the FIFO
    unlink(pipe_name_.c_str());
  }

  while (!output_queue_.empty()) {
    Message* m = output_queue_.front();
    output_queue_.pop();
    delete m;
  }

  // Close any outstanding, received file descriptors
  for (std::vector<int>::iterator
       i = input_overflow_fds_.begin(); i != input_overflow_fds_.end(); ++i) {
    HANDLE_EINTR(close(*i));
  }
  input_overflow_fds_.clear();
}

//------------------------------------------------------------------------------
// Channel's methods simply call through to ChannelImpl.
Channel::Channel(const std::string& channel_id, Mode mode,
                 Listener* listener)
    : channel_impl_(new ChannelImpl(channel_id, mode, listener)) {
}

Channel::~Channel() {
  delete channel_impl_;
}

bool Channel::Connect() {
  return channel_impl_->Connect();
}

void Channel::Close() {
  channel_impl_->Close();
}

void Channel::set_listener(Listener* listener) {
  channel_impl_->set_listener(listener);
}

bool Channel::Send(Message* message) {
  return channel_impl_->Send(message);
}

int Channel::GetClientFileDescriptor() const {
  return channel_impl_->GetClientFileDescriptor();
}

}  // namespace IPC