1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipc/mojo/async_handle_waiter.h"
#include "base/bind.h"
#include "base/message_loop/message_loop.h"
#include "base/run_loop.h"
#include "base/threading/thread.h"
#include "mojo/public/cpp/system/message_pipe.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace IPC {
namespace internal {
namespace {
void ReadOneByteOfX(MojoHandle pipe) {
uint32_t size = 1;
char buffer = ' ';
MojoResult rv = MojoReadMessage(pipe, &buffer, &size, nullptr, nullptr,
MOJO_READ_MESSAGE_FLAG_NONE);
CHECK_EQ(rv, MOJO_RESULT_OK);
CHECK_EQ(size, 1U);
CHECK_EQ(buffer, 'X');
}
class AsyncHandleWaiterTest : public testing::Test {
public:
AsyncHandleWaiterTest() : worker_("test_worker") {
worker_.StartWithOptions(
base::Thread::Options(base::MessageLoop::TYPE_IO, 0));
}
void SetUp() override {
message_loop_.reset(new base::MessageLoopForIO());
ResetSignaledStates();
mojo::CreateMessagePipe(nullptr, &pipe_to_write_, &pipe_to_read_);
target_.reset(new AsyncHandleWaiter(base::Bind(
&AsyncHandleWaiterTest::HandleIsReady, base::Unretained(this))));
}
protected:
MojoResult Start() {
return target_->Wait(pipe_to_read_.get().value(),
MOJO_HANDLE_SIGNAL_READABLE);
}
void ResetSignaledStates() {
signaled_result_ = MOJO_RESULT_UNKNOWN;
run_loop_.reset(new base::RunLoop());
}
void WriteToPipe() {
MojoResult rv = MojoWriteMessage(pipe_to_write_.get().value(), "X", 1,
nullptr, 0, MOJO_WRITE_MESSAGE_FLAG_NONE);
CHECK_EQ(rv, MOJO_RESULT_OK);
}
void WriteToPipeFromWorker() {
worker_.message_loop_proxy()->PostTask(
FROM_HERE, base::Bind(&AsyncHandleWaiterTest::WriteToPipe,
base::Unretained(this)));
}
void WaitAndAssertSignaledAndMessageIsArrived() {
run_loop_->Run();
EXPECT_EQ(MOJO_RESULT_OK, signaled_result_);
ReadOneByteOfX(pipe_to_read_.get().value());
}
void WaitAndAssertNotSignaled() {
run_loop_->RunUntilIdle();
EXPECT_EQ(MOJO_RESULT_OK, MojoWait(pipe_to_read_.get().value(),
MOJO_HANDLE_SIGNAL_READABLE, 0,
nullptr));
EXPECT_EQ(MOJO_RESULT_UNKNOWN, signaled_result_);
}
void HandleIsReady(MojoResult result) {
CHECK_EQ(base::MessageLoop::current(), message_loop_.get());
CHECK_EQ(signaled_result_, MOJO_RESULT_UNKNOWN);
signaled_result_ = result;
run_loop_->Quit();
}
base::Thread worker_;
scoped_ptr<base::MessageLoop> message_loop_;
scoped_ptr<base::RunLoop> run_loop_;
mojo::ScopedMessagePipeHandle pipe_to_write_;
mojo::ScopedMessagePipeHandle pipe_to_read_;
scoped_ptr<AsyncHandleWaiter> target_;
MojoResult signaled_result_;
};
TEST_F(AsyncHandleWaiterTest, SignalFromSameThread) {
EXPECT_EQ(MOJO_RESULT_OK, Start());
WriteToPipe();
WaitAndAssertSignaledAndMessageIsArrived();
// Ensures that the waiter is reusable.
ResetSignaledStates();
EXPECT_EQ(MOJO_RESULT_OK, Start());
WriteToPipe();
WaitAndAssertSignaledAndMessageIsArrived();
}
TEST_F(AsyncHandleWaiterTest, SignalFromDifferentThread) {
EXPECT_EQ(MOJO_RESULT_OK, Start());
WriteToPipeFromWorker();
WaitAndAssertSignaledAndMessageIsArrived();
// Ensures that the waiter is reusable.
ResetSignaledStates();
EXPECT_EQ(MOJO_RESULT_OK, Start());
WriteToPipeFromWorker();
WaitAndAssertSignaledAndMessageIsArrived();
}
TEST_F(AsyncHandleWaiterTest, DeleteWaiterBeforeWrite) {
EXPECT_EQ(MOJO_RESULT_OK, Start());
target_.reset();
WriteToPipe();
WaitAndAssertNotSignaled();
}
TEST_F(AsyncHandleWaiterTest, DeleteWaiterBeforeSignal) {
EXPECT_EQ(MOJO_RESULT_OK, Start());
WriteToPipe();
target_.reset();
WaitAndAssertNotSignaled();
}
class HandlerThatReenters {
public:
HandlerThatReenters(base::RunLoop* loop, MojoHandle handle)
: target_(nullptr), handle_(handle), loop_(loop), step_(0) {}
void set_target(AsyncHandleWaiter* target) { target_ = target; }
void HandleIsReady(MojoResult result) {
switch (step_) {
case 0:
RestartAndClose(result);
break;
case 1:
HandleClosingSignal(result);
break;
default:
NOTREACHED();
break;
}
}
void RestartAndClose(MojoResult result) {
CHECK_EQ(step_, 0);
CHECK_EQ(result, MOJO_RESULT_OK);
step_ = 1;
ReadOneByteOfX(handle_);
target_->Wait(handle_, MOJO_HANDLE_SIGNAL_READABLE);
// This signals the |AsyncHandleWaiter|.
MojoResult rv = MojoClose(handle_);
CHECK_EQ(rv, MOJO_RESULT_OK);
}
void HandleClosingSignal(MojoResult result) {
CHECK_EQ(step_, 1);
CHECK_EQ(result, MOJO_RESULT_CANCELLED);
step_ = 2;
loop_->Quit();
}
bool IsClosingHandled() const { return step_ == 2; }
AsyncHandleWaiter* target_;
MojoHandle handle_;
base::RunLoop* loop_;
int step_;
};
TEST_F(AsyncHandleWaiterTest, RestartWaitingWhileSignaled) {
HandlerThatReenters handler(run_loop_.get(), pipe_to_read_.get().value());
target_.reset(new AsyncHandleWaiter(base::Bind(
&HandlerThatReenters::HandleIsReady, base::Unretained(&handler))));
handler.set_target(target_.get());
EXPECT_EQ(MOJO_RESULT_OK, Start());
WriteToPipe();
run_loop_->Run();
EXPECT_TRUE(handler.IsClosingHandled());
// |HandlerThatReenters::RestartAndClose| already closed it.
ignore_result(pipe_to_read_.release());
}
} // namespace
} // namespace internal
} // namespace IPC
|