1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Software adjust volume of samples, allows each audio stream its own
// volume without impacting master volume for chrome and other applications.
// Implemented as templates to allow 8, 16 and 32 bit implementations.
// 8 bit is unsigned and biased by 128.
#include <algorithm>
#include "base/atomicops.h"
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/shared_memory.h"
#include "media/audio/audio_util.h"
#if defined(OS_MACOSX)
#include "media/audio/mac/audio_low_latency_output_mac.h"
#endif
using base::subtle::Atomic32;
const uint32 kUnknownDataSize = static_cast<uint32>(-1);
namespace media {
// TODO(fbarchard): Convert to intrinsics for better efficiency.
template<class Fixed>
static int ScaleChannel(int channel, int volume) {
return static_cast<int>((static_cast<Fixed>(channel) * volume) >> 16);
}
template<class Format, class Fixed, int bias>
static void AdjustVolume(Format* buf_out,
int sample_count,
int fixed_volume) {
for (int i = 0; i < sample_count; ++i) {
buf_out[i] = static_cast<Format>(ScaleChannel<Fixed>(buf_out[i] - bias,
fixed_volume) + bias);
}
}
static const int kChannel_L = 0;
static const int kChannel_R = 1;
static const int kChannel_C = 2;
template<class Fixed, int min_value, int max_value>
static int AddChannel(int val, int adder) {
Fixed sum = static_cast<Fixed>(val) + static_cast<Fixed>(adder);
if (sum > max_value)
return max_value;
if (sum < min_value)
return min_value;
return static_cast<int>(sum);
}
// FoldChannels() downmixes multichannel (ie 5.1 Surround Sound) to Stereo.
// Left and Right channels are preserved asis, and Center channel is
// distributed equally to both sides. To be perceptually 1/2 volume on
// both channels, 1/sqrt(2) is used instead of 1/2.
// Fixed point math is used for efficiency. 16 bits of fraction and 8,16 or 32
// bits of integer are used.
// 8 bit samples are unsigned and 128 represents 0, so a bias is removed before
// doing calculations, then readded for the final output.
template<class Format, class Fixed, int min_value, int max_value, int bias>
static void FoldChannels(Format* buf_out,
int sample_count,
const float volume,
int channels) {
Format* buf_in = buf_out;
const int center_volume = static_cast<int>(volume * 0.707f * 65536);
const int fixed_volume = static_cast<int>(volume * 65536);
for (int i = 0; i < sample_count; ++i) {
int center = static_cast<int>(buf_in[kChannel_C] - bias);
int left = static_cast<int>(buf_in[kChannel_L] - bias);
int right = static_cast<int>(buf_in[kChannel_R] - bias);
center = ScaleChannel<Fixed>(center, center_volume);
left = ScaleChannel<Fixed>(left, fixed_volume);
right = ScaleChannel<Fixed>(right, fixed_volume);
buf_out[0] = static_cast<Format>(
AddChannel<Fixed, min_value, max_value>(left, center) + bias);
buf_out[1] = static_cast<Format>(
AddChannel<Fixed, min_value, max_value>(right, center) + bias);
buf_out += 2;
buf_in += channels;
}
}
// AdjustVolume() does an in place audio sample change.
bool AdjustVolume(void* buf,
size_t buflen,
int channels,
int bytes_per_sample,
float volume) {
DCHECK(buf);
if (volume < 0.0f || volume > 1.0f)
return false;
if (volume == 1.0f) {
return true;
} else if (volume == 0.0f) {
memset(buf, 0, buflen);
return true;
}
if (channels > 0 && channels <= 8 && bytes_per_sample > 0) {
int sample_count = buflen / bytes_per_sample;
const int fixed_volume = static_cast<int>(volume * 65536);
if (bytes_per_sample == 1) {
AdjustVolume<uint8, int32, 128>(reinterpret_cast<uint8*>(buf),
sample_count,
fixed_volume);
return true;
} else if (bytes_per_sample == 2) {
AdjustVolume<int16, int32, 0>(reinterpret_cast<int16*>(buf),
sample_count,
fixed_volume);
return true;
} else if (bytes_per_sample == 4) {
AdjustVolume<int32, int64, 0>(reinterpret_cast<int32*>(buf),
sample_count,
fixed_volume);
return true;
}
}
return false;
}
bool FoldChannels(void* buf,
size_t buflen,
int channels,
int bytes_per_sample,
float volume) {
DCHECK(buf);
if (volume < 0.0f || volume > 1.0f)
return false;
if (channels > 2 && channels <= 8 && bytes_per_sample > 0) {
int sample_count = buflen / (channels * bytes_per_sample);
if (bytes_per_sample == 1) {
FoldChannels<uint8, int32, -128, 127, 128>(
reinterpret_cast<uint8*>(buf),
sample_count,
volume,
channels);
return true;
} else if (bytes_per_sample == 2) {
FoldChannels<int16, int32, -32768, 32767, 0>(
reinterpret_cast<int16*>(buf),
sample_count,
volume,
channels);
return true;
} else if (bytes_per_sample == 4) {
FoldChannels<int32, int64, 0x80000000, 0x7fffffff, 0>(
reinterpret_cast<int32*>(buf),
sample_count,
volume,
channels);
return true;
}
}
return false;
}
bool DeinterleaveAudioChannel(void* source,
float* destination,
int channels,
int channel_index,
int bytes_per_sample,
size_t number_of_frames) {
switch (bytes_per_sample) {
case 1:
{
uint8* source8 = static_cast<uint8*>(source) + channel_index;
const float kScale = 1.0f / 128.0f;
for (unsigned i = 0; i < number_of_frames; ++i) {
destination[i] = kScale * static_cast<int>(*source8 + 128);
source8 += channels;
}
return true;
}
case 2:
{
int16* source16 = static_cast<int16*>(source) + channel_index;
const float kScale = 1.0f / 32768.0f;
for (unsigned i = 0; i < number_of_frames; ++i) {
destination[i] = kScale * *source16;
source16 += channels;
}
return true;
}
case 4:
{
int32* source32 = static_cast<int32*>(source) + channel_index;
const float kScale = 1.0f / (1L << 31);
for (unsigned i = 0; i < number_of_frames; ++i) {
destination[i] = kScale * *source32;
source32 += channels;
}
return true;
}
default:
break;
}
return false;
}
void InterleaveFloatToInt16(const std::vector<float*>& source,
int16* destination,
size_t number_of_frames) {
const float kScale = 32768.0f;
int channels = source.size();
for (int i = 0; i < channels; ++i) {
float* channel_data = source[i];
for (size_t j = 0; j < number_of_frames; ++j) {
float sample = kScale * channel_data[j];
if (sample < -32768.0)
sample = -32768.0;
else if (sample > 32767.0)
sample = 32767.0;
destination[j * channels + i] = static_cast<int16>(sample);
}
}
}
double GetAudioHardwareSampleRate()
{
#if defined(OS_MACOSX)
// Hardware sample-rate on the Mac can be configured, so we must query.
return AUAudioOutputStream::HardwareSampleRate();
#else
// Hardware for Windows and Linux is nearly always 48KHz.
// TODO(crogers) : return correct value in rare non-48KHz cases.
return 48000.0;
#endif
}
size_t GetAudioHardwareBufferSize() {
// The sizes here were determined by experimentation and are roughly
// the lowest value (for low latency) that still allowed glitch-free
// audio under high loads.
//
// For Mac OS X the chromium audio backend uses a low-latency
// CoreAudio API, so a low buffer size is possible. For other OSes,
// further tuning may be needed.
#if defined(OS_MACOSX)
return 128;
#elif defined(OS_LINUX)
return 2048;
#else
return 2048;
#endif
}
// When transferring data in the shared memory, first word is size of data
// in bytes. Actual data starts immediately after it.
uint32 TotalSharedMemorySizeInBytes(uint32 packet_size) {
// Need to reserve extra 4 bytes for size of data.
return packet_size + sizeof(Atomic32);
}
uint32 PacketSizeSizeInBytes(uint32 shared_memory_created_size) {
return shared_memory_created_size - sizeof(Atomic32);
}
uint32 GetActualDataSizeInBytes(base::SharedMemory* shared_memory,
uint32 shared_memory_size) {
char* ptr = static_cast<char*>(shared_memory->memory()) + shared_memory_size;
DCHECK_EQ(0u, reinterpret_cast<size_t>(ptr) & 3);
// Actual data size stored at the end of the buffer.
uint32 actual_data_size =
base::subtle::Acquire_Load(reinterpret_cast<volatile Atomic32*>(ptr));
return std::min(actual_data_size, shared_memory_size);
}
void SetActualDataSizeInBytes(base::SharedMemory* shared_memory,
uint32 shared_memory_size,
uint32 actual_data_size) {
char* ptr = static_cast<char*>(shared_memory->memory()) + shared_memory_size;
DCHECK_EQ(0u, reinterpret_cast<size_t>(ptr) & 3);
// Set actual data size at the end of the buffer.
base::subtle::Release_Store(reinterpret_cast<volatile Atomic32*>(ptr),
actual_data_size);
}
void SetUnknownDataSize(base::SharedMemory* shared_memory,
uint32 shared_memory_size) {
SetActualDataSizeInBytes(shared_memory, shared_memory_size, kUnknownDataSize);
}
bool IsUnknownDataSize(base::SharedMemory* shared_memory,
uint32 shared_memory_size) {
char* ptr = static_cast<char*>(shared_memory->memory()) + shared_memory_size;
DCHECK_EQ(0u, reinterpret_cast<size_t>(ptr) & 3);
// Actual data size stored at the end of the buffer.
uint32 actual_data_size =
base::subtle::Acquire_Load(reinterpret_cast<volatile Atomic32*>(ptr));
return actual_data_size == kUnknownDataSize;
}
} // namespace media
|