1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
|
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// THREAD SAFETY
//
// The AlsaPcmOutputStream object's internal state is accessed by two threads:
//
// client thread - creates the object and calls the public APIs.
// message loop thread - executes all the internal tasks including querying
// the data source for more data, writing to the alsa device, and closing
// the alsa device. It does *not* handle opening the device though.
//
// The class is designed so that most operations that read/modify the object's
// internal state are done on the message loop thread. The exception is data
// conatined in the |shared_data_| structure. Data in this structure needs to
// be accessed by both threads, and should only be accessed when the
// |shared_data_.lock_| is held.
//
// All member variables that are not in |shared_data_| are created/destroyed on
// the |message_loop_|. This allows safe access to them from any task posted to
// |message_loop_|. The values in |shared_data_| are considered to be read-only
// signals by tasks posted to |message_loop_| (see the SEMANTICS of
// |shared_data_| section below). Because of these two constraints, tasks can,
// and must, be coded to be safe in the face of a changing |shared_data_|.
//
//
// SEMANTICS OF |shared_data_|
//
// Though |shared_data_| is accessable by both threads, the code has been
// structured so that all mutations to |shared_data_| are only done in the
// client thread. The message loop thread only ever reads the shared data.
//
// This reduces the need for critical sections because the public API code can
// assume that no mutations occur to the |shared_data_| between queries.
//
// On the message loop side, tasks have been coded such that they can
// operate safely regardless of when state changes happen to |shared_data_|.
// Code that is sensitive to the timing of state changes are delegated to the
// |shared_data_| object so they can executed while holding
// |shared_data_.lock_|.
//
//
// SEMANTICS OF CloseTask()
//
// The CloseTask() is responsible for cleaning up any resources that were
// acquired after a successful Open(). After a CloseTask() has executed,
// scheduling of reads should stop. Currently scheduled tasks may run, but
// they should not attempt to access any of the internal structures beyond
// querying the |stop_stream_| flag and no-oping themselves. This will
// guarantee that eventually no more tasks will be posted into the message
// loop, and the AlsaPcmOutputStream will be able to delete itself.
//
//
// SEMANTICS OF ERROR STATES
//
// The object has two distinct error states: |shared_data_.state_| == kInError
// and |stop_stream_|. The |shared_data_.state_| state is only settable
// by the client thread, and thus cannot be used to signal when the ALSA device
// fails due to a hardware (or other low-level) event. The |stop_stream_|
// variable is only accessed by the message loop thread; it is used to indicate
// that the playback_handle should no longer be used either because of a
// hardware/low-level event, or because the CloseTask() has been run.
//
// When |shared_data_.state_| == kInError, all public API functions will fail
// with an error (Start() will call the OnError() function on the callback
// immediately), or no-op themselves with the exception of Close(). Even if an
// error state has been entered, if Open() has previously returned successfully,
// Close() must be called to cleanup the ALSA devices and release resources.
//
// When |stop_stream_| is set, no more commands will be made against the
// ALSA device, and playback will effectively stop. From the client's point of
// view, it will seem that the device has just clogged and stopped requesting
// data.
#include "media/audio/linux/alsa_output.h"
#include <algorithm>
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/stl_util-inl.h"
#include "base/time.h"
#include "media/audio/audio_util.h"
#include "media/audio/linux/alsa_wrapper.h"
#include "media/audio/linux/audio_manager_linux.h"
#include "media/base/data_buffer.h"
#include "media/base/seekable_buffer.h"
// Amount of time to wait if we've exhausted the data source. This is to avoid
// busy looping.
static const uint32 kNoDataSleepMilliseconds = 10;
// According to the linux nanosleep manpage, nanosleep on linux can miss the
// deadline by up to 10ms because the kernel timeslice is 10ms. Give a 2x
// buffer to compensate for the timeslice, and any additional slowdowns.
static const uint32 kSleepErrorMilliseconds = 20;
// Set to 0 during debugging if you want error messages due to underrun
// events or other recoverable errors.
#if defined(NDEBUG)
static const int kPcmRecoverIsSilent = 1;
#else
static const int kPcmRecoverIsSilent = 0;
#endif
const char AlsaPcmOutputStream::kDefaultDevice[] = "default";
const char AlsaPcmOutputStream::kAutoSelectDevice[] = "";
const char AlsaPcmOutputStream::kPlugPrefix[] = "plug:";
// Since we expect to only be able to wake up with a resolution of
// kSleepErrorMilliseconds, double that for our minimum required latency.
const uint32 AlsaPcmOutputStream::kMinLatencyMicros =
kSleepErrorMilliseconds * 2 * 1000;
namespace {
// ALSA is currently limited to 48Khz.
// TODO(fbarchard): Resample audio from higher frequency to 48000.
const uint32 kMaxSampleRate = 48000;
snd_pcm_format_t BitsToFormat(char bits_per_sample) {
switch (bits_per_sample) {
case 8:
return SND_PCM_FORMAT_U8;
case 16:
return SND_PCM_FORMAT_S16;
case 24:
return SND_PCM_FORMAT_S24;
case 32:
return SND_PCM_FORMAT_S32;
default:
return SND_PCM_FORMAT_UNKNOWN;
}
}
// While the "default" device may support multi-channel audio, in Alsa, only
// the device names surround40, surround41, surround50, etc, have a defined
// channel mapping according to Lennart:
//
// http://0pointer.de/blog/projects/guide-to-sound-apis.html
//
// This function makes a best guess at the specific > 2 channel device name
// based on the number of channels requested. NULL is returned if no device
// can be found to match the channel numbers. In this case, using
// kDefaultDevice is probably the best bet.
//
// A five channel source is assumed to be surround50 instead of surround41
// (which is also 5 channels).
//
// TODO(ajwong): The source data should have enough info to tell us if we want
// surround41 versus surround51, etc., instead of needing us to guess base don
// channel number. Fix API to pass that data down.
const char* GuessSpecificDeviceName(uint32 channels) {
switch (channels) {
case 8:
return "surround71";
case 7:
return "surround70";
case 6:
return "surround51";
case 5:
return "surround50";
case 4:
return "surround40";
default:
return NULL;
}
}
// Reorder PCM from AAC layout to Alsa layout.
// TODO(fbarchard): Switch layout when ffmpeg is updated.
template<class Format>
static void Swizzle50Layout(Format* b, uint32 filled) {
static const uint32 kNumSurroundChannels = 5;
Format aac[kNumSurroundChannels];
for (uint32 i = 0; i < filled; i += sizeof(aac), b += kNumSurroundChannels) {
memcpy(aac, b, sizeof(aac));
b[0] = aac[1]; // L
b[1] = aac[2]; // R
b[2] = aac[3]; // Ls
b[3] = aac[4]; // Rs
b[4] = aac[0]; // C
}
}
template<class Format>
static void Swizzle51Layout(Format* b, uint32 filled) {
static const uint32 kNumSurroundChannels = 6;
Format aac[kNumSurroundChannels];
for (uint32 i = 0; i < filled; i += sizeof(aac), b += kNumSurroundChannels) {
memcpy(aac, b, sizeof(aac));
b[0] = aac[1]; // L
b[1] = aac[2]; // R
b[2] = aac[3]; // Ls
b[3] = aac[4]; // Rs
b[4] = aac[0]; // C
b[5] = aac[5]; // LFE
}
}
} // namespace
// Not in an anonymous so that it can be a friend to AlsaPcmOutputStream.
std::ostream& operator<<(std::ostream& os,
AlsaPcmOutputStream::InternalState state) {
switch (state) {
case AlsaPcmOutputStream::kInError:
os << "kInError";
break;
case AlsaPcmOutputStream::kCreated:
os << "kCreated";
break;
case AlsaPcmOutputStream::kIsOpened:
os << "kIsOpened";
break;
case AlsaPcmOutputStream::kIsPlaying:
os << "kIsPlaying";
break;
case AlsaPcmOutputStream::kIsStopped:
os << "kIsStopped";
break;
case AlsaPcmOutputStream::kIsClosed:
os << "kIsClosed";
break;
};
return os;
}
AlsaPcmOutputStream::AlsaPcmOutputStream(const std::string& device_name,
AudioManager::Format format,
uint32 channels,
uint32 sample_rate,
uint32 bits_per_sample,
AlsaWrapper* wrapper,
AudioManagerLinux* manager,
MessageLoop* message_loop)
: shared_data_(MessageLoop::current()),
requested_device_name_(device_name),
pcm_format_(BitsToFormat(bits_per_sample)),
channels_(channels),
sample_rate_(sample_rate),
bytes_per_sample_(bits_per_sample / 8),
bytes_per_frame_(channels_ * bits_per_sample / 8),
should_downmix_(false),
latency_micros_(0),
micros_per_packet_(0),
bytes_per_output_frame_(bytes_per_frame_),
alsa_buffer_frames_(0),
stop_stream_(false),
wrapper_(wrapper),
manager_(manager),
playback_handle_(NULL),
frames_per_packet_(0),
client_thread_loop_(MessageLoop::current()),
message_loop_(message_loop) {
// Sanity check input values.
if ((sample_rate > kMaxSampleRate) || (sample_rate <= 0)) {
LOG(WARNING) << "Unsupported audio frequency.";
shared_data_.TransitionTo(kInError);
}
if (AudioManager::AUDIO_PCM_LINEAR != format) {
LOG(WARNING) << "Only linear PCM supported.";
shared_data_.TransitionTo(kInError);
}
if (pcm_format_ == SND_PCM_FORMAT_UNKNOWN) {
LOG(WARNING) << "Unsupported bits per sample: " << bits_per_sample;
shared_data_.TransitionTo(kInError);
}
}
AlsaPcmOutputStream::~AlsaPcmOutputStream() {
InternalState state = shared_data_.state();
DCHECK(state == kCreated || state == kIsClosed || state == kInError);
// TODO(ajwong): Ensure that CloseTask has been called and the
// playback handle released by DCHECKing that playback_handle_ is NULL.
// Currently, because of Bug 18217, there is a race condition on destruction
// where the stream is not always stopped and closed, causing this to fail.
}
bool AlsaPcmOutputStream::Open(uint32 packet_size) {
DCHECK_EQ(MessageLoop::current(), client_thread_loop_);
DCHECK_EQ(0U, packet_size % bytes_per_frame_)
<< "Buffers should end on a frame boundary. Frame size: "
<< bytes_per_frame_;
if (shared_data_.state() == kInError) {
return false;
}
if (!shared_data_.CanTransitionTo(kIsOpened)) {
NOTREACHED() << "Invalid state: " << shared_data_.state();
return false;
}
// We do not need to check if the transition was successful because
// CanTransitionTo() was checked above, and it is assumed that this
// object's public API is only called on one thread so the state cannot
// transition out from under us.
shared_data_.TransitionTo(kIsOpened);
message_loop_->PostTask(
FROM_HERE,
NewRunnableMethod(this, &AlsaPcmOutputStream::OpenTask, packet_size));
return true;
}
void AlsaPcmOutputStream::Close() {
DCHECK_EQ(MessageLoop::current(), client_thread_loop_);
// Sanity check that the transition occurs correctly. It is safe to
// continue anyways because all operations for closing are idempotent.
if (shared_data_.TransitionTo(kIsClosed) != kIsClosed) {
NOTREACHED() << "Unable to transition Closed.";
}
// Signal our successful close, and disassociate the source callback.
shared_data_.OnClose(this);
shared_data_.set_source_callback(NULL);
message_loop_->PostTask(
FROM_HERE,
NewRunnableMethod(this, &AlsaPcmOutputStream::CloseTask));
// Signal to the manager that we're closed and can be removed. Since
// we just posted a CloseTask to the message loop, we won't be deleted
// immediately, but it will happen soon afterwards.
manager()->ReleaseStream(this);
}
void AlsaPcmOutputStream::Start(AudioSourceCallback* callback) {
DCHECK_EQ(MessageLoop::current(), client_thread_loop_);
CHECK(callback);
shared_data_.set_source_callback(callback);
// Only post the task if we can enter the playing state.
if (shared_data_.TransitionTo(kIsPlaying) == kIsPlaying) {
message_loop_->PostTask(
FROM_HERE,
NewRunnableMethod(this, &AlsaPcmOutputStream::StartTask));
}
}
void AlsaPcmOutputStream::Stop() {
DCHECK_EQ(MessageLoop::current(), client_thread_loop_);
shared_data_.TransitionTo(kIsStopped);
}
void AlsaPcmOutputStream::SetVolume(double volume) {
DCHECK_EQ(MessageLoop::current(), client_thread_loop_);
shared_data_.set_volume(static_cast<float>(volume));
}
void AlsaPcmOutputStream::GetVolume(double* volume) {
DCHECK_EQ(MessageLoop::current(), client_thread_loop_);
*volume = shared_data_.volume();
}
void AlsaPcmOutputStream::OpenTask(uint32 packet_size) {
DCHECK_EQ(MessageLoop::current(), message_loop_);
// Initialize the configuration variables.
packet_size_ = packet_size;
frames_per_packet_ = packet_size_ / bytes_per_frame_;
// Try to open the device.
micros_per_packet_ =
FramesToMicros(packet_size / bytes_per_frame_, sample_rate_);
latency_micros_ = std::max(AlsaPcmOutputStream::kMinLatencyMicros,
micros_per_packet_ * 2);
if (requested_device_name_ == kAutoSelectDevice) {
playback_handle_ = AutoSelectDevice(latency_micros_);
if (playback_handle_) {
LOG(INFO) << "Auto-selected device: " << device_name_;
}
} else {
device_name_ = requested_device_name_;
playback_handle_ = OpenDevice(device_name_, channels_, latency_micros_);
}
// Finish initializing the stream if the device was opened successfully.
if (playback_handle_ == NULL) {
stop_stream_ = true;
} else {
bytes_per_output_frame_ = should_downmix_ ? 2 * bytes_per_sample_ :
bytes_per_frame_;
uint32 output_packet_size = frames_per_packet_ * bytes_per_output_frame_;
buffer_.reset(new media::SeekableBuffer(0, output_packet_size));
// Get alsa buffer size.
snd_pcm_uframes_t buffer_size;
snd_pcm_uframes_t period_size;
int error = wrapper_->PcmGetParams(playback_handle_, &buffer_size,
&period_size);
if (error < 0) {
LOG(ERROR) << "Failed to get playback buffer size from ALSA: "
<< wrapper_->StrError(error);
alsa_buffer_frames_ = frames_per_packet_;
} else {
alsa_buffer_frames_ = buffer_size;
}
}
}
void AlsaPcmOutputStream::StartTask() {
DCHECK_EQ(MessageLoop::current(), message_loop_);
if (stop_stream_) {
return;
}
// When starting again, drop all packets in the device and prepare it again
// incase we are restarting from a pause state and need to flush old data.
int error = wrapper_->PcmDrop(playback_handle_);
if (error < 0 && error != -EAGAIN) {
LOG(ERROR) << "Failure clearing playback device ("
<< wrapper_->PcmName(playback_handle_) << "): "
<< wrapper_->StrError(error);
stop_stream_ = true;
return;
}
error = wrapper_->PcmPrepare(playback_handle_);
if (error < 0 && error != -EAGAIN) {
LOG(ERROR) << "Failure preparing stream ("
<< wrapper_->PcmName(playback_handle_) << "): "
<< wrapper_->StrError(error);
stop_stream_ = true;
return;
}
ScheduleNextWrite(false);
}
void AlsaPcmOutputStream::CloseTask() {
// NOTE: Keep this function idempotent to handle errors that might cause
// multiple CloseTasks to be posted.
DCHECK_EQ(MessageLoop::current(), message_loop_);
// Shutdown the audio device.
if (playback_handle_ && !CloseDevice(playback_handle_)) {
LOG(WARNING) << "Unable to close audio device. Leaking handle.";
}
playback_handle_ = NULL;
// Release the buffer.
buffer_.reset();
// Signal anything that might already be scheduled to stop.
stop_stream_ = true;
}
void AlsaPcmOutputStream::BufferPacket(bool* source_exhausted) {
DCHECK_EQ(MessageLoop::current(), message_loop_);
// If stopped, simulate a 0-lengthed packet.
if (stop_stream_) {
buffer_->Clear();
*source_exhausted = true;
return;
}
*source_exhausted = false;
// Request more data if we have capacity.
if (buffer_->forward_capacity() > buffer_->forward_bytes()) {
// Before making a request to source for data. We need to determine the
// delay (in bytes) for the requested data to be played.
snd_pcm_sframes_t delay = buffer_->forward_bytes() * bytes_per_frame_ /
bytes_per_output_frame_ + GetCurrentDelay() * bytes_per_output_frame_;
scoped_refptr<media::DataBuffer> packet =
new media::DataBuffer(packet_size_);
size_t packet_size =
shared_data_.OnMoreData(this, packet->GetWritableData(),
packet->GetBufferSize(), delay);
CHECK(packet_size <= packet->GetBufferSize()) <<
"Data source overran buffer.";
// This should not happen, but incase it does, drop any trailing bytes
// that aren't large enough to make a frame. Without this, packet writing
// may stall because the last few bytes in the packet may never get used by
// WritePacket.
DCHECK(packet_size % bytes_per_frame_ == 0);
packet_size = (packet_size / bytes_per_frame_) * bytes_per_frame_;
if (should_downmix_) {
if (media::FoldChannels(packet->GetWritableData(),
packet_size,
channels_,
bytes_per_sample_,
shared_data_.volume())) {
// Adjust packet size for downmix.
packet_size =
packet_size / bytes_per_frame_ * bytes_per_output_frame_;
} else {
LOG(ERROR) << "Folding failed";
}
} else {
// TODO(ajwong): Handle other channel orderings.
// Handle channel order for 5.0 audio.
if (channels_ == 5) {
if (bytes_per_sample_ == 1) {
Swizzle50Layout(packet->GetWritableData(), packet_size);
} else if (bytes_per_sample_ == 2) {
Swizzle50Layout(packet->GetWritableData(), packet_size);
} else if (bytes_per_sample_ == 4) {
Swizzle50Layout(packet->GetWritableData(), packet_size);
}
}
// Handle channel order for 5.1 audio.
if (channels_ == 6) {
if (bytes_per_sample_ == 1) {
Swizzle51Layout(packet->GetWritableData(), packet_size);
} else if (bytes_per_sample_ == 2) {
Swizzle51Layout(packet->GetWritableData(), packet_size);
} else if (bytes_per_sample_ == 4) {
Swizzle51Layout(packet->GetWritableData(), packet_size);
}
}
media::AdjustVolume(packet->GetWritableData(),
packet_size,
channels_,
bytes_per_sample_,
shared_data_.volume());
}
if (packet_size > 0) {
packet->SetDataSize(packet_size);
// Add the packet to the buffer.
buffer_->Append(packet);
} else {
*source_exhausted = true;
}
}
}
void AlsaPcmOutputStream::WritePacket() {
DCHECK_EQ(MessageLoop::current(), message_loop_);
// If the device is in error, just eat the bytes.
if (stop_stream_) {
buffer_->Clear();
return;
}
CHECK_EQ(buffer_->forward_bytes() % bytes_per_output_frame_, 0u);
const uint8* buffer_data;
size_t buffer_size;
if (buffer_->GetCurrentChunk(&buffer_data, &buffer_size)) {
buffer_size = buffer_size - (buffer_size % bytes_per_output_frame_);
snd_pcm_sframes_t frames = buffer_size / bytes_per_output_frame_;
DCHECK_GT(frames, 0);
snd_pcm_sframes_t frames_written =
wrapper_->PcmWritei(playback_handle_, buffer_data, frames);
if (frames_written < 0) {
// Attempt once to immediately recover from EINTR,
// EPIPE (overrun/underrun), ESTRPIPE (stream suspended). WritePacket
// will eventually be called again, so eventual recovery will happen if
// muliple retries are required.
frames_written = wrapper_->PcmRecover(playback_handle_,
frames_written,
kPcmRecoverIsSilent);
}
if (frames_written < 0) {
// TODO(ajwong): Is EAGAIN the only error we want to except from stopping
// the pcm playback?
if (frames_written != -EAGAIN) {
LOG(ERROR) << "Failed to write to pcm device: "
<< wrapper_->StrError(frames_written);
shared_data_.OnError(this, frames_written);
stop_stream_ = true;
}
} else {
if (frames_written > frames) {
LOG(WARNING)
<< "snd_pcm_writei() has written more frame that we asked.";
frames_written = frames;
}
// Seek forward in the buffer after we've written some data to ALSA.
buffer_->Seek(frames_written * bytes_per_output_frame_);
}
}
}
void AlsaPcmOutputStream::WriteTask() {
DCHECK_EQ(MessageLoop::current(), message_loop_);
if (stop_stream_) {
return;
}
bool source_exhausted;
BufferPacket(&source_exhausted);
WritePacket();
ScheduleNextWrite(source_exhausted);
}
void AlsaPcmOutputStream::ScheduleNextWrite(bool source_exhausted) {
DCHECK_EQ(MessageLoop::current(), message_loop_);
if (stop_stream_) {
return;
}
// Next write is scheduled for the moment when half of the buffer is
// available.
uint32 frames_avail_wanted = alsa_buffer_frames_ / 2;
uint32 available_frames = GetAvailableFrames();
uint32 next_fill_time_ms = 0;
// It's possible to have more frames available than what we want, in which
// case we'll leave our |next_fill_time_ms| at 0ms.
if (available_frames < frames_avail_wanted) {
uint32 frames_until_empty_enough = frames_avail_wanted - available_frames;
next_fill_time_ms =
FramesToMillis(frames_until_empty_enough, sample_rate_);
}
// Adjust for timer resolution issues.
if (next_fill_time_ms < kSleepErrorMilliseconds) {
next_fill_time_ms = 0;
} else {
next_fill_time_ms -= kSleepErrorMilliseconds;
}
// Avoid busy looping if the data source is exhausted.
if (source_exhausted) {
next_fill_time_ms = std::max(next_fill_time_ms, kNoDataSleepMilliseconds);
}
// Only schedule more reads/writes if we are still in the playing state.
if (shared_data_.state() == kIsPlaying) {
if (next_fill_time_ms == 0) {
message_loop_->PostTask(
FROM_HERE,
NewRunnableMethod(this, &AlsaPcmOutputStream::WriteTask));
} else {
// TODO(ajwong): Measure the reliability of the delay interval. Use
// base/histogram.h.
message_loop_->PostDelayedTask(
FROM_HERE,
NewRunnableMethod(this, &AlsaPcmOutputStream::WriteTask),
next_fill_time_ms);
}
}
}
uint32 AlsaPcmOutputStream::FramesToMicros(uint32 frames, uint32 sample_rate) {
return frames * base::Time::kMicrosecondsPerSecond / sample_rate;
}
uint32 AlsaPcmOutputStream::FramesToMillis(uint32 frames, uint32 sample_rate) {
return frames * base::Time::kMillisecondsPerSecond / sample_rate;
}
std::string AlsaPcmOutputStream::FindDeviceForChannels(uint32 channels) {
// Constants specified by the ALSA API for device hints.
static const int kGetAllDevices = -1;
static const char kPcmInterfaceName[] = "pcm";
static const char kIoHintName[] = "IOID";
static const char kNameHintName[] = "NAME";
const char* wanted_device = GuessSpecificDeviceName(channels);
if (!wanted_device) {
return "";
}
std::string guessed_device;
void** hints = NULL;
int error = wrapper_->DeviceNameHint(kGetAllDevices,
kPcmInterfaceName,
&hints);
if (error == 0) {
// NOTE: Do not early return from inside this if statement. The
// hints above need to be freed.
for (void** hint_iter = hints; *hint_iter != NULL; hint_iter++) {
// Only examine devices that are output capable.. Valid values are
// "Input", "Output", and NULL which means both input and output.
scoped_ptr_malloc<char> io(
wrapper_->DeviceNameGetHint(*hint_iter, kIoHintName));
if (io != NULL && strcmp(io.get(), "Input") == 0)
continue;
// Attempt to select the closest device for number of channels.
scoped_ptr_malloc<char> name(
wrapper_->DeviceNameGetHint(*hint_iter, kNameHintName));
if (strncmp(wanted_device, name.get(), strlen(wanted_device)) == 0) {
guessed_device = name.get();
break;
}
}
// Destory the hint now that we're done with it.
wrapper_->DeviceNameFreeHint(hints);
hints = NULL;
} else {
LOG(ERROR) << "Unable to get hints for devices: "
<< wrapper_->StrError(error);
}
return guessed_device;
}
snd_pcm_t* AlsaPcmOutputStream::OpenDevice(const std::string& device_name,
uint32 channels,
unsigned int latency) {
snd_pcm_t* handle = NULL;
int error = wrapper_->PcmOpen(&handle, device_name.c_str(),
SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK);
if (error < 0) {
LOG(ERROR) << "Cannot open audio device (" << device_name << "): "
<< wrapper_->StrError(error);
return NULL;
}
// Configure the device for software resampling.
if ((error = wrapper_->PcmSetParams(handle,
pcm_format_,
SND_PCM_ACCESS_RW_INTERLEAVED,
channels,
sample_rate_,
1, // soft_resample -- let ALSA resample
latency)) < 0) {
LOG(ERROR) << "Unable to set PCM parameters for (" << device_name
<< "): " << wrapper_->StrError(error)
<< " -- Format: " << pcm_format_
<< " Channels: " << channels
<< " Latency (us): " << latency;
if (!CloseDevice(handle)) {
// TODO(ajwong): Retry on certain errors?
LOG(WARNING) << "Unable to close audio device. Leaking handle.";
}
return NULL;
}
return handle;
}
bool AlsaPcmOutputStream::CloseDevice(snd_pcm_t* handle) {
std::string name = wrapper_->PcmName(handle);
int error = wrapper_->PcmClose(handle);
if (error < 0) {
LOG(ERROR) << "Error closing audio device (" << name << "): "
<< wrapper_->StrError(error);
return false;
}
return true;
}
snd_pcm_sframes_t AlsaPcmOutputStream::GetAvailableFrames() {
DCHECK_EQ(MessageLoop::current(), message_loop_);
if (stop_stream_) {
return 0;
}
// Find the number of frames queued in the sound device.
snd_pcm_sframes_t available_frames =
wrapper_->PcmAvailUpdate(playback_handle_);
if (available_frames < 0) {
available_frames = wrapper_->PcmRecover(playback_handle_,
available_frames,
kPcmRecoverIsSilent);
}
if (available_frames < 0) {
LOG(ERROR) << "Failed querying available frames. Assuming 0: "
<< wrapper_->StrError(available_frames);
return 0;
}
return available_frames;
}
snd_pcm_sframes_t AlsaPcmOutputStream::GetCurrentDelay() {
snd_pcm_sframes_t delay = 0;
// Don't query ALSA's delay if we have underrun since it'll be jammed at
// some non-zero value and potentially even negative!
if (wrapper_->PcmState(playback_handle_) != SND_PCM_STATE_XRUN) {
int error = wrapper_->PcmDelay(playback_handle_, &delay);
if (error < 0) {
// Assume a delay of zero and attempt to recover the device.
delay = 0;
error = wrapper_->PcmRecover(playback_handle_,
error,
kPcmRecoverIsSilent);
if (error < 0) {
LOG(ERROR) << "Failed querying delay: " << wrapper_->StrError(error);
}
}
if (delay < 0)
delay = 0;
}
return delay;
}
snd_pcm_t* AlsaPcmOutputStream::AutoSelectDevice(unsigned int latency) {
// For auto-selection:
// 1) Attempt to open a device that best matches the number of channels
// requested.
// 2) If that fails, attempt the "plug:" version of it incase ALSA can
// remap do some software conversion to make it work.
// 3) Fallback to kDefaultDevice.
// 4) If that fails too, try the "plug:" version of kDefaultDevice.
// 5) Give up.
snd_pcm_t* handle = NULL;
device_name_ = FindDeviceForChannels(channels_);
// Step 1.
if (!device_name_.empty()) {
if ((handle = OpenDevice(device_name_, channels_, latency)) != NULL) {
return handle;
}
// Step 2.
device_name_ = kPlugPrefix + device_name_;
if ((handle = OpenDevice(device_name_, channels_, latency)) != NULL) {
return handle;
}
}
// For the kDefaultDevice device, we can only reliably depend on 2-channel
// output to have the correct ordering according to Lennart. For the channel
// formats that we know how to downmix from (5 channel to 6 channel), setup
// downmixing.
//
// TODO(ajwong): We need a SupportsFolding() function.
uint32 default_channels = channels_;
if (default_channels >= 5 && default_channels <= 6) {
should_downmix_ = true;
default_channels = 2;
}
// Step 3.
device_name_ = kDefaultDevice;
if ((handle = OpenDevice(device_name_, default_channels, latency)) != NULL) {
return handle;
}
// Step 4.
device_name_ = kPlugPrefix + device_name_;
if ((handle = OpenDevice(device_name_, default_channels, latency)) != NULL) {
return handle;
}
// Unable to open any device.
device_name_.clear();
return NULL;
}
AudioManagerLinux* AlsaPcmOutputStream::manager() {
DCHECK_EQ(MessageLoop::current(), client_thread_loop_);
return manager_;
}
AlsaPcmOutputStream::SharedData::SharedData(
MessageLoop* state_transition_loop)
: state_(kCreated),
volume_(1.0f),
source_callback_(NULL),
state_transition_loop_(state_transition_loop) {
}
bool AlsaPcmOutputStream::SharedData::CanTransitionTo(InternalState to) {
AutoLock l(lock_);
return CanTransitionTo_Locked(to);
}
bool AlsaPcmOutputStream::SharedData::CanTransitionTo_Locked(
InternalState to) {
lock_.AssertAcquired();
switch (state_) {
case kCreated:
return to == kIsOpened || to == kIsClosed || to == kInError;
case kIsOpened:
return to == kIsPlaying || to == kIsStopped ||
to == kIsClosed || to == kInError;
case kIsPlaying:
return to == kIsPlaying || to == kIsStopped ||
to == kIsClosed || to == kInError;
case kIsStopped:
return to == kIsPlaying || to == kIsStopped ||
to == kIsClosed || to == kInError;
case kInError:
return to == kIsClosed || to == kInError;
case kIsClosed:
default:
return false;
}
}
AlsaPcmOutputStream::InternalState
AlsaPcmOutputStream::SharedData::TransitionTo(InternalState to) {
DCHECK_EQ(MessageLoop::current(), state_transition_loop_);
AutoLock l(lock_);
if (!CanTransitionTo_Locked(to)) {
NOTREACHED() << "Cannot transition from: " << state_ << " to: " << to;
state_ = kInError;
} else {
state_ = to;
}
return state_;
}
AlsaPcmOutputStream::InternalState AlsaPcmOutputStream::SharedData::state() {
AutoLock l(lock_);
return state_;
}
float AlsaPcmOutputStream::SharedData::volume() {
AutoLock l(lock_);
return volume_;
}
void AlsaPcmOutputStream::SharedData::set_volume(float v) {
AutoLock l(lock_);
volume_ = v;
}
uint32 AlsaPcmOutputStream::SharedData::OnMoreData(AudioOutputStream* stream,
void* dest,
uint32 max_size,
uint32 pending_bytes) {
AutoLock l(lock_);
if (source_callback_) {
return source_callback_->OnMoreData(stream, dest, max_size, pending_bytes);
}
return 0;
}
void AlsaPcmOutputStream::SharedData::OnClose(AudioOutputStream* stream) {
AutoLock l(lock_);
if (source_callback_) {
source_callback_->OnClose(stream);
}
}
void AlsaPcmOutputStream::SharedData::OnError(AudioOutputStream* stream,
int code) {
AutoLock l(lock_);
if (source_callback_) {
source_callback_->OnError(stream, code);
}
}
// Changes the AudioSourceCallback to proxy calls to. Pass in NULL to
// release ownership of the currently registered callback.
void AlsaPcmOutputStream::SharedData::set_source_callback(
AudioSourceCallback* callback) {
DCHECK_EQ(MessageLoop::current(), state_transition_loop_);
AutoLock l(lock_);
source_callback_ = callback;
}
|